Barsacchi R, Ranieri-Raggi M, Bergamini C, Raggi A
Biochem J. 1979 Aug 15;182(2):361-6. doi: 10.1042/bj1820361.
The kinetic properties of a 300-fold purified cardiac AMP deaminase were studied and compared with those of the corresponding enzyme from skeletal muscle. The heart enzyme is activated by ATP and less efficiently by ADP, and is inhibited by Pi, phosphocreatine and GTP. ATP, even at micromolar concentrations, is able to abolish the effects of the inhibitors. The affinity of the enzyme for AMP is low in the absence of activators (Km 3.1 mM), but, in the presence of ATP, becomes as high as that of skeletal-muscle AMP deaminase (Km 0.4 mM). The maximal activation by ATP is observed at alkaline pH (pH 7.5-8.0). Under the same conditions ATP is maximally inhibitory for skeletal-muscle enzyme. These results suggest that AMP deaminase in the heart is always in the activated state, whereas in skeletal muscle the enzyme is active only during exhaustive contractions.
对纯化了300倍的心脏AMP脱氨酶的动力学特性进行了研究,并与骨骼肌中相应的酶进行了比较。心脏中的这种酶被ATP激活,被ADP激活的效率较低,且受到无机磷酸盐、磷酸肌酸和GTP的抑制。即使在微摩尔浓度下,ATP也能够消除抑制剂的作用。在没有激活剂的情况下,该酶对AMP的亲和力较低(Km为3.1 mM),但在ATP存在时,其亲和力变得与骨骼肌AMP脱氨酶一样高(Km为0.4 mM)。在碱性pH值(pH 7.5 - 8.0)下观察到ATP的最大激活作用。在相同条件下,ATP对骨骼肌酶具有最大抑制作用。这些结果表明,心脏中的AMP脱氨酶始终处于激活状态,而在骨骼肌中,该酶仅在剧烈收缩期间才具有活性。