Bubb M O, Conradie J D
Immunology. 1978 Mar;34(3):449-58.
The development of methods for the production of intact Cμ3 and Cμ4 domains of IgM have made possible the assessment of some of their structural and biological functions. Antiserum against Fcμ fragment detected both domains and illustrated their complete antigenic non-identity. Circular dichroism spectroscopy and the retention of antigenicity indicated that both domains had retained most of their native structure. No interaction of the type Cμ3—Cμ3, Cμ4—Cμ4 or Cμ3—Cμ4 could be detected under non-dissociating conditions by analytical ultracentrifugation or molecular exclusion chromatography experiments. These results lead us to believe that the transmission of effector messages between the Fab and Fc parts of IgM takes place through structural changes at the quaternary level. C[unk]1-fixation experiments with IgM and several of its fragments and domains show that (a) the Cμ4 domain contains the C[unk]1-fixing site; (b) the high C[unk]1-fixing capacity of IgM or Fcμ cannot be explained on the basis of a simple accumulative model of complement fixing domains; (c) the C[unk]1-fixing site is independent of the native structure of the Cμ4 domain; (d) the C[unk]1-fixing site does not contain carbohydrate. Examination of the IgM receptor on the surface of human T lymphocytes show that (a) Cμ4 domain is primarily responsible for the reaction and Cμ3 domain has very little affinity; (b) native structure is essential for the reaction because reduction and alkylation of the Cμ4 domain destroyed both its original conformation and affinity for this receptor; (c) IgM and Fcμ had a much greater affinity for the receptor than monomeric subunits: (d) carbohydrate on Cμ4 domain is not involved in the affinity reaction.
完整 IgM 的 Cμ3 和 Cμ4 结构域生产方法的发展,使得评估它们的一些结构和生物学功能成为可能。针对 Fcμ 片段的抗血清检测到了这两个结构域,并表明它们在抗原性上完全不同。圆二色光谱法和抗原性的保留表明,这两个结构域都保留了其大部分天然结构。在非解离条件下,通过分析超速离心或分子排阻色谱实验,未检测到 Cμ3—Cμ3、Cμ4—Cμ4 或 Cμ3—Cμ4 类型的相互作用。这些结果使我们相信,IgM 的 Fab 和 Fc 部分之间效应信息的传递是通过四级结构的变化发生的。用 IgM 及其几个片段和结构域进行的 C[unk]1 固定实验表明:(a)Cμ4 结构域包含 C[unk]1 固定位点;(b)IgM 或 Fcμ 的高 C[unk]1 固定能力不能基于补体固定结构域的简单累积模型来解释;(c)C[unk]1 固定位点独立于 Cμ4 结构域的天然结构;(d)C[unk]1 固定位点不含碳水化合物。对人 T 淋巴细胞表面 IgM 受体的检测表明:(a)Cμ4 结构域主要负责该反应,而 Cμ3 结构域亲和力很小;(b)天然结构对该反应至关重要,因为 Cμ4 结构域的还原和烷基化破坏了其原始构象和对该受体的亲和力;(c)IgM 和 Fcμ 对该受体的亲和力比单体亚基大得多;(d)Cμ4 结构域上的碳水化合物不参与亲和力反应。