Suppr超能文献

蓝绿藻集胞藻中暗内源性代谢的突变分析。

Mutational analysis of dark endogenous metabolism in the blue-green bacterium Anacystis nidulans.

作者信息

Doolittle W F, Singer R A

出版信息

J Bacteriol. 1974 Sep;119(3):677-83. doi: 10.1128/jb.119.3.677-683.1974.

Abstract

We describe a mutant (strain 704) of the obligate photoautotroph Anacystis nidulans which behaves like the wild type under continuous illumination but which in the dark rapidly loses viability, respires little, and incorporates label into ribonucleic acid and protein at rates considerably less than observed with the darkened wild type. Extracts of this mutant strain show no detectable 6-phosphogluconate dehydrogenase (EC 1.1.1.44) activity. Spontaneous revertants of mutant 704 were selected as survivors of prolonged incubation in darkness. Of 10 such strains examined, none had regained 6-phosphogluconate dehydrogenase activity, and all had lost detectable glucose-6-phosphate dehydrogenase (EC 1.1.1.49) activity. Although dark survival of these revertants paralleled that of the wild type, rates of dark endogenous respiration and incorporation of labeled precursors into ribonucleic acid were still very low, comparable to those observed with strain 704. These results are consistent with the following hypotheses concerning dark endogenous metabolism in unicellular blue-green bacteria. (i) Although the oxidative pentose phosphate cycle (hexose monophosphate shunt) may play a major role in endogenous metabolism in A. nidulans, as proposed by others, it is not the only pathway capable of providing energy for maintenance of viability in darkness. (ii) Much of the endogenous metabolic activity (respiration and macromolecular synthesis) observed in darkened cultures of wild-type A. nidulans is not required for survival alone, and must therefore serve other functions.

摘要

我们描述了专性光合自养生物集胞藻6803的一个突变体(菌株704),它在连续光照下的行为与野生型相似,但在黑暗中会迅速丧失活力,呼吸微弱,并且将放射性标记掺入核糖核酸和蛋白质的速率远低于黑暗处理的野生型。该突变菌株的提取物未检测到6 - 磷酸葡萄糖酸脱氢酶(EC 1.1.1.44)活性。突变体704的自发回复突变体是通过在黑暗中长时间培养的存活者筛选出来的。在所检测的10个这样的菌株中,没有一个恢复6 - 磷酸葡萄糖酸脱氢酶活性,并且所有菌株都丧失了可检测到的葡萄糖 - 6 - 磷酸脱氢酶(EC 1.1.1.49)活性。尽管这些回复突变体在黑暗中的存活情况与野生型相似,但黑暗中内源性呼吸速率以及将标记前体掺入核糖核酸的速率仍然非常低,与菌株704所观察到的速率相当。这些结果与以下关于单细胞蓝细菌黑暗中内源性代谢的假说一致。(i)尽管氧化戊糖磷酸循环(己糖磷酸支路)可能如其他人所提出的那样在集胞藻6803的内源性代谢中起主要作用,但它不是唯一能够为黑暗中维持活力提供能量的途径。(ii)在野生型集胞藻6803黑暗培养物中观察到的许多内源性代谢活动(呼吸和大分子合成)并非仅为生存所必需,因此必定具有其他功能。

相似文献

1
Mutational analysis of dark endogenous metabolism in the blue-green bacterium Anacystis nidulans.
J Bacteriol. 1974 Sep;119(3):677-83. doi: 10.1128/jb.119.3.677-683.1974.
2
Photosystem II regulation of macromolecule synthesis in the blue-green alga Aphanocapsa 6714.
J Bacteriol. 1976 Nov;128(2):623-32. doi: 10.1128/jb.128.2.623-632.1976.
3
Leucine biosynthesis in the blue-green bacterium Anacystis nidulans.
J Bacteriol. 1975 Nov;124(2):810-4. doi: 10.1128/jb.124.2.810-814.1975.
4
The metabolism of glucose by heterocysts and vegetative cells of Anabaena cylindrica.
Arch Microbiol. 1974;101(2):161-7. doi: 10.1007/BF00455936.
7
Novel ribonucleic acid species accumulated in the dark in the blue-green alga Anacystis nidulans.
J Bacteriol. 1974 May;118(2):351-7. doi: 10.1128/jb.118.2.351-357.1974.
8
Characterization of a zwf mutant of Synechococcus sp. strain PCC 7942.
J Bacteriol. 1995 May;177(9):2550-3. doi: 10.1128/jb.177.9.2550-2553.1995.
9
Effect of lead nitrate on liver carbohydrate enzymes and glycogen content in the rat.
Carcinogenesis. 1990 Dec;11(12):2199-204. doi: 10.1093/carcin/11.12.2199.
10
Endogenous dark respiration of the blue-green alga, Plectonema boryanum.
J Bacteriol. 1971 Apr;106(1):45-50. doi: 10.1128/jb.106.1.45-50.1971.

引用本文的文献

1
Circadian regulation of metabolism across photosynthetic organisms.
Plant J. 2023 Nov;116(3):650-668. doi: 10.1111/tpj.16405. Epub 2023 Aug 2.
2
A Hard Day's Night: Cyanobacteria in Diel Cycles.
Trends Microbiol. 2019 Mar;27(3):231-242. doi: 10.1016/j.tim.2018.11.002. Epub 2018 Dec 5.
4
Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis.
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):E8344-E8353. doi: 10.1073/pnas.1613446113. Epub 2016 Dec 1.
5
Giving Time Purpose: The Synechococcus elongatus Clock in a Broader Network Context.
Annu Rev Genet. 2015;49:485-505. doi: 10.1146/annurev-genet-111212-133227. Epub 2015 Oct 5.
6
The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth.
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1916-25. doi: 10.1073/pnas.1504576112. Epub 2015 Mar 30.
7
9
Characterization of a zwf mutant of Synechococcus sp. strain PCC 7942.
J Bacteriol. 1995 May;177(9):2550-3. doi: 10.1128/jb.177.9.2550-2553.1995.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
The endogenous metabolism of microorganisms.
Annu Rev Microbiol. 1962;16:241-64. doi: 10.1146/annurev.mi.16.100162.001325.
3
4
Purification and properties of unicellular blue-green algae (order Chroococcales).
Bacteriol Rev. 1971 Jun;35(2):171-205. doi: 10.1128/br.35.2.171-205.1971.
5
Isolation of mutants of Escherichia coli B altered in their ability to synthesize glycogen.
J Bacteriol. 1969 Feb;97(2):970-2. doi: 10.1128/jb.97.2.970-972.1969.
7
Metabolism of glucose by unicellular blue-green algae.
Arch Mikrobiol. 1972;87(4):303-22. doi: 10.1007/BF00409131.
8
The role and regulation of energy reserve polymers in micro-organisms.
Adv Microb Physiol. 1973;10:135-266. doi: 10.1016/s0065-2911(08)60088-0.
9
Precursor of 5S ribosomal ribonucleic acid in the blue-green alga Anacystis nidulans.
J Bacteriol. 1974 Feb;117(2):660-6. doi: 10.1128/jb.117.2.660-666.1974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验