Tripathi R K, Gottlieb D
J Bacteriol. 1969 Oct;100(1):310-8. doi: 10.1128/jb.100.1.310-318.1969.
Pyrrolnitrin at 10 mug/ml inhibited the growth of Saccharomyces cerevisiae, Penicillium atrovenetum, and P. oxalicum. The primary site of action of pyrrolnitrin on S. cerevisiae was the terminal electron transport system between succinate or reduced nicotinamide adenine dinucleotide (NADH) and coenzyme Q. At growth inhibitory concentrations, pyrrolnitrin inhibited endogenous and exogenous respiration immediately after its addition to the system. In mitochondrial preparations, the antibiotic inhibited succinate oxidase, NADH oxidase, succinate-cytochrome c reductase, NADH-cytochrome c reductase, and succinate-coenzyme Q(6) reductase. In addition, pyrrolnitrin inhibited the antimycin-insensitive reduction of dichlorophenolindophenol and of the tetrazolium dye 2,2'-di-p-nitrophenyl-(3,3'-dimethoxy-4,4'-bi-phenylene)5,5'-diphenylditetrazolium. The reduction of another tetrazolium dye, 2-p-iodophenyl-3-p-nitrophenyl-5-phenyltetrazolium chloride, that was antimycin-sensitive, was also inhibited by pyrrolnitrin. The antibiotic had no effect on the activity of cytochrome oxidase, and it did not appear to bind with flavine adenine dinucleotide, the coenzyme of succinic dehydrogenase. In whole cells of S. cerevisiae, pyrrolnitrin inhibited the incorporation of (14)C-glucose into nucleic acids and proteins. It also inhibited the incorporation of (14)C-uracil, (3)H-thymidine, and (14)C-amino acids into ribonucleic acid, deoxyribonucleic acid, and protein, respectively. The in vitro protein synthesis in Rhizoctonia solani and Escherichia coli was not affected by pyrrolnitrin. Pyrrolnitrin also inhibited the uptake of radioactive tracers, but there was no general damage to the cell membranes that would result in an increased leakage of cell metabolites. Apparently, pyrrolnitrin inhibits fungal growth by inhibiting the respiratory electron transport system.
10微克/毫升的硝吡咯菌素可抑制酿酒酵母、黑曲霉和草酸青霉的生长。硝吡咯菌素对酿酒酵母的主要作用位点是琥珀酸或还原型烟酰胺腺嘌呤二核苷酸(NADH)与辅酶Q之间的末端电子传递系统。在生长抑制浓度下,硝吡咯菌素添加到系统后立即抑制内源性和外源性呼吸。在线粒体制剂中,该抗生素抑制琥珀酸氧化酶、NADH氧化酶、琥珀酸 - 细胞色素c还原酶、NADH - 细胞色素c还原酶和琥珀酸 - 辅酶Q(6)还原酶。此外,硝吡咯菌素抑制二氯酚靛酚和四唑染料2,2'-二对硝基苯基 - (3,3'-二甲氧基 - 4,4'-联苯撑)5,5'-二苯基二四唑的抗霉素不敏感还原反应。另一种对抗霉素敏感的四唑染料2 - 对碘苯基 - 3 - 对硝基苯基 - 5 - 苯基氯化四唑的还原反应也被硝吡咯菌素抑制。该抗生素对细胞色素氧化酶的活性没有影响,并且似乎不与琥珀酸脱氢酶的辅酶黄素腺嘌呤二核苷酸结合。在酿酒酵母的全细胞中,硝吡咯菌素抑制(14)C - 葡萄糖掺入核酸和蛋白质。它还分别抑制(14)C - 尿嘧啶、(3)H - 胸腺嘧啶和(14)C - 氨基酸掺入核糖核酸、脱氧核糖核酸和蛋白质。硝吡咯菌素对茄丝核菌和大肠杆菌的体外蛋白质合成没有影响。硝吡咯菌素还抑制放射性示踪剂的摄取,但对细胞膜没有普遍损伤,不会导致细胞代谢物泄漏增加。显然,硝吡咯菌素通过抑制呼吸电子传递系统来抑制真菌生长。