Suppr超能文献

使用信息论和诊断相关分组对病例组合复杂性进行分析。

An analysis of case mix complexity using information theory and diagnostic related grouping.

作者信息

Horn S D, Schumacher D N

出版信息

Med Care. 1979 Apr;17(4):382-9. doi: 10.1097/00005650-197904000-00006.

Abstract

Case mix complexity measurements are essential to determine health care efficiency and effectiveness. Measures of patient care processes and outcomes must be adjusted for case mix before valid comparisons can be made. Hospital reimbursement, particularly prospective reimbursement, must take into account differences in case mix. In addition, a key variable for hospital classification is case mix. There are, however, no widely accepted easily computed case mix measures. Information theory measures of case mix have been developed but their acceptance has been limited by a lack of verification of their basic assumption that concentration of disease is related to clinical complexity. We discuss the rationale underlying the mathematical computaton of information theory measures and demonstrate a statistically significant relationship between clinical measures of case mix complexity and information theory measures of case mix complexity.

摘要

病例组合复杂性测量对于确定医疗保健的效率和效果至关重要。在进行有效比较之前,必须针对病例组合对患者护理过程和结果的测量进行调整。医院报销,尤其是前瞻性报销,必须考虑病例组合的差异。此外,病例组合是医院分类的一个关键变量。然而,目前尚无被广泛接受且易于计算的病例组合测量方法。虽然已经开发了病例组合的信息论测量方法,但由于缺乏对其基本假设(即疾病集中与临床复杂性相关)的验证,其接受程度有限。我们讨论了信息论测量方法数学计算背后的基本原理,并证明了病例组合复杂性的临床测量与病例组合复杂性的信息论测量之间存在统计学上的显著关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验