Richardson P D
Br J Pharmacol. 1974 Dec;52(4):481-98. doi: 10.1111/j.1476-5381.1974.tb09716.x.
1 A modification of the Folkow Technique for simultaneous measurement of blood flow and capillary filtration coefficient (CFC) in the cat jejunum is described. The modification retained the sympathetic innervation of the preparation, and in the present experiments, drugs were administered intravenously.2 There is evidence that CFC is a cardiovascular quantity independent of blood flow or regional vascular resistance in these preparations. Low doses of drugs may affect CFC without altering the blood pressure, blood flow, or heart rate.3 Under control conditions the CFC, a measure of functional exchange vessel area, was lower than previously reported for similar, but denervated preparations.4 alpha-Adrenoceptor stimulation with phenylephrine (1.0 mug kg(-1) min(-1), i.v.) caused a fall of 75-85% from control values of CFC with concomitant rises in blood pressure of 0-15% and falls in blood flow of 10-40%. The heart rate rose by 0-15%. Phentolamine (0.5-2.0 mg/kg, i.v.) caused a rise in CFC and a slight fall in vascular resistance, and blocked the effects of phenylephrine on this tissue.5 beta-Adrenoceptor stimulation with isoprenaline (0.2 mug kg(-1) min(-1), i.v.) caused a rise in CFC of 75-110%, a fall in blood pressure of 0-10%, a rise in blood flow of 10-60% and a rise in heart rate of up to 35%. Propranolol caused a transient rise in CFC when injected i.v. in a dose of 0.1 mg/kg, which was adequate to block the effects of isoprenaline.6 Angiotensin (25-100 ng kg(-1) min(-1), i.v.) caused falls in CFC of up to 100% and rises in vascular resistance. Aminophylline (0.2-0.4 mg kg(-1) min(-1), i.v.) caused rises in CFC of up to 200% with falls in vascular resistance.7 Histamine (0.01 to 1.0 mug kg(-1) min(-1), i.v.) had little effect on vascular resistance, but 10 and 40 mug kg(-1) min(-1) caused falls in vascular resistance. Doses up to and including 10 mug kg(-1) min(-1) caused falls in CFC, but the higher doses, or smaller doses after histaminase inhibition caused rises in CFC. alpha-Adrenoceptor blockade reversed the fall in CFC caused by small doses of histamine, to a rise. Mepyramine completely blocked the effects of histamine on these preparations.8 5-Hydroxytryptamine (33-100 mug kg(-1) min(-1), i.v.) caused a rise in vascular resistance and a fall in CFC of up to 85%. These effects were blocked by methysergide (250 mug/kg, i.v.).9 Rises in CFC indicate an increase in functional exchange vessel area in the tissue, and falls in CFC a decrease in the area available for vascular exchange. These changes are examined against the possibility of the drugs causing reflex adjustments in sympathetic tone, of systemic deactivation of intravenously administered drugs, and of drug effects on vascular permeability.
本文描述了一种对福尔科夫技术的改进方法,用于同时测量猫空肠的血流量和毛细血管滤过系数(CFC)。该改进方法保留了标本的交感神经支配,在本实验中,药物通过静脉给药。
有证据表明,在这些标本中,CFC是一个独立于血流量或局部血管阻力的心血管参数。低剂量药物可能影响CFC,而不改变血压、血流量或心率。
在对照条件下,CFC(一种功能性交换血管面积的测量指标)低于先前报道的类似但去神经支配标本的值。
用去氧肾上腺素(1.0微克/千克·分钟-1,静脉注射)刺激α-肾上腺素受体,导致CFC从对照值下降75 - 85%,同时血压升高0 - 15%,血流量下降10 - 40%。心率升高0 - 15%。酚妥拉明(0.5 - 2.0毫克/千克,静脉注射)导致CFC升高,血管阻力略有下降,并阻断了去氧肾上腺素对该组织的作用。
用异丙肾上腺素(0.2微克/千克·分钟-1,静脉注射)刺激β-肾上腺素受体,导致CFC升高75 - 110%,血压下降0 - 10%,血流量升高10 - 60%,心率升高高达35%。普萘洛尔静脉注射剂量为0.1毫克/千克时,导致CFC短暂升高,这足以阻断异丙肾上腺素的作用。
血管紧张素(25 - 100纳克/千克·分钟-1,静脉注射)导致CFC下降高达100%,血管阻力升高。氨茶碱(0.2 - 0.4毫克/千克·分钟-1,静脉注射)导致CFC升高高达200%,血管阻力下降。
组胺(0.01至1.0微克/千克·分钟-1,静脉注射)对血管阻力影响不大,但10和40微克/千克·分钟-1导致血管阻力下降。剂量高达并包括10微克/千克·分钟-1导致CFC下降,但更高剂量或组胺酶抑制后的较小剂量导致CFC升高。α-肾上腺素受体阻断将小剂量组胺引起的CFC下降逆转至升高。美吡拉敏完全阻断了组胺对这些标本的作用。
5-羟色胺(33 - 100微克/千克·分钟-1,静脉注射)导致血管阻力升高,CFC下降高达85%。这些作用被麦角新碱(250微克/千克,静脉注射)阻断。
CFC升高表明组织中功能性交换血管面积增加,CFC下降表明可用于血管交换的面积减少。针对药物引起交感神经张力反射性调节、静脉给药药物的全身失活以及药物对血管通透性的影响等可能性,对这些变化进行了研究。