Suppr超能文献

嗜钠微球菌中的葡萄糖分解代谢

Glucose catabolism in Micrococcus sodonensis.

作者信息

Perry J J, Evans J B

出版信息

J Bacteriol. 1967 Jun;93(6):1839-46. doi: 10.1128/jb.93.6.1839-1846.1967.

Abstract

The inability of Micrococcus sodonensis to grow on glucose as the sole source of carbon and energy was investigated. Estimation of pathways of glucose catabolism indicated that both the glycolytic and hexose monophosphate pathways are present in this organism. Comparative studies with Escherichia coli demonstrated that key enzymes for glucose catabolism were present in M. sodonensis in quantities equivalent to those of E. coli. The glucose-6-phosphate and 6-phosphogluconate dehydrogenases of M. sodonensis were nicotinamide adenine dinucleotide phosphate (NADP) specific, and glyceraldehyde-3-phosphate dehydrogenase was nicotinamide adenine dinucleotide specific. Transhydrogenase and reduced NADP oxidase were absent. Growth of the organism in the presence of glucose did not result in a repressed ability to oxidize tricarboxylic acid cycle intermediates, but these cells did have a decreased capacity for glucose degradation. The addition of substrates rich in growth-promoting substances, e.g., yeast extract, did not provide requisite nutrients for growth on glucose. Studies with (32)P suggest that M. sodonensis is incapable of synthesizing energy-rich phosphate compounds during the catabolism of glucose.

摘要

对嗜钠微球菌在以葡萄糖作为唯一碳源和能源时无法生长的情况进行了研究。对葡萄糖分解代谢途径的评估表明,该微生物同时存在糖酵解途径和磷酸己糖途径。与大肠杆菌的比较研究表明,嗜钠微球菌中存在的葡萄糖分解代谢关键酶的量与大肠杆菌相当。嗜钠微球菌的葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶对烟酰胺腺嘌呤二核苷酸磷酸(NADP)具有特异性,而3-磷酸甘油醛脱氢酶对烟酰胺腺嘌呤二核苷酸具有特异性。不存在转氢酶和还原型NADP氧化酶。该微生物在葡萄糖存在的情况下生长,并不会导致其氧化三羧酸循环中间产物的能力受到抑制,但这些细胞的葡萄糖降解能力确实有所下降。添加富含生长促进物质的底物,如酵母提取物,并未为在葡萄糖上生长提供所需的营养物质。用(32)P进行的研究表明,嗜钠微球菌在葡萄糖分解代谢过程中无法合成富含能量的磷酸化合物。

相似文献

1
Glucose catabolism in Micrococcus sodonensis.
J Bacteriol. 1967 Jun;93(6):1839-46. doi: 10.1128/jb.93.6.1839-1846.1967.
2
Enzymes of glucose catabolism in Monilinia fructicola.
Mycopathol Mycol Appl. 1969 Jan 29;37(1):49-56. doi: 10.1007/BF02051330.
3
Regulatory effect of pyruvate on the glucose metabolism of Clostridium thermosaccharolyticum.
J Bacteriol. 1967 Sep;94(3):530-6. doi: 10.1128/jb.94.3.530-536.1967.
4
Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans.
J Bacteriol. 1971 Oct;108(1):334-42. doi: 10.1128/jb.108.1.334-342.1971.
5
Pathways of NADPH formation in Escherichia coli.
J Biol Chem. 1977 May 25;252(10):3382-91.
8
Physiological studies on Phymatotrichum omnivorum. 3. Enzymes of glucose catabolism.
Mycopathol Mycol Appl. 1973 Apr 30;49(4):339-45. doi: 10.1007/BF02050726.
9
Oxidation and assimilation of carbohydrates by Micrococcus sodonensis.
J Bacteriol. 1966 Jan;91(1):33-8. doi: 10.1128/jb.91.1.33-38.1966.

引用本文的文献

1
Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans.
J Bacteriol. 1971 Oct;108(1):334-42. doi: 10.1128/jb.108.1.334-342.1971.

本文引用的文献

1
PYRIDINE NUCLEOTIDE-LINKED REACTIONS OF PSEUDOMONAS NATRIEGENS.
J Bacteriol. 1962 Oct;84(4):819-21. doi: 10.1128/jb.84.4.819-821.1962.
2
Oxidative metabolism of lactate and acetate by Micrococcus sodonensis.
J Bacteriol. 1960 Jan;79(1):113-8. doi: 10.1128/jb.79.1.113-118.1960.
3
FINE CONTROL OF PHOSPHOPYRUVATE CARBOXYLASE ACTIVITY IN ESCHERICHIA COLI.
Biochim Biophys Acta. 1965 Jan;96:169-72. doi: 10.1016/0005-2787(65)90624-6.
5
RATE LIMITING EFFECTS OF PYRIDINE NUCLEOTIDES ON CARBOHYDRATE CATABOLIC PATHWAYS OF MICROORGANISMS.
Biochem Biophys Res Commun. 1963 Aug 1;12:274-9. doi: 10.1016/0006-291x(63)90295-x.
6
Mutant of Aerobacter aerogenes lacking glucose repression.
J Bacteriol. 1960 Oct;80(4):536-43. doi: 10.1128/jb.80.4.536-543.1960.
7
Comparative study of glucose catabolism by the radiorespirometric method.
J Bacteriol. 1958 Aug;76(2):207-16. doi: 10.1128/jb.76.2.207-216.1958.
8
The assimilation of amino acids by respiring washed Staphylococci.
Arch Biochem Biophys. 1956 Nov;65(1):302-18. doi: 10.1016/0003-9861(56)90196-5.
9
Oxidation and assimilation of carbohydrates by Micrococcus sodonensis.
J Bacteriol. 1966 Jan;91(1):33-8. doi: 10.1128/jb.91.1.33-38.1966.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验