Suppr超能文献

恒河猴大脑皮层中对图像大小变化和视差做出反应的细胞。

Cells responding to changing image size and disparity in the cortex of the rhesus monkey.

作者信息

Zeki S M

出版信息

J Physiol. 1974 Nov;242(3):827-41. doi: 10.1113/jphysiol.1974.sp010736.

Abstract
  1. The cells of the cortex of the posterior bank of the superior temporal sulcus of the monkey appear to be specialized to signal motion in the visual field. In this paper, cells in this cortical area capable of signalling motion towards or away from the animal are described.2. Two such types of cell were encountered. One type, the opposed movement complex and opposed movement hypercomplex cells, responded to two edges at a given orientation moving towards or away from each other within the receptive fields. These cells were driven either monocularly or binocularly, but when binocularly driven the cells responded in an identical manner to stimulation of each eye, thus suggesting that such cells must receive a double, and opposed, input from each eye. The other type of cell, always binocularly driven, responded to movement in opposite directions on the two retinas, thus suggesting that such cells must receive diametrically opposite connexions from the two eyes.3. Long penetrations made to study the manner in which such cells were grouped together in the cortex revealed that they were arranged in small groups or clusters, separated from each other by the common directionally selective cells so prominently present in this area. Thus, cells with one type of wiring mechanism were separated from each other by cells receiving another, and more common, type of anatomical wiring.
摘要
  1. 猕猴颞上沟后岸皮质的细胞似乎专门用于对视野中的运动进行信号传递。在本文中,描述了该皮质区域中能够对朝向或远离动物的运动进行信号传递的细胞。

  2. 遇到了两种这样的细胞类型。一种类型,即对向运动复合细胞和对向运动超复合细胞,对在感受野内以给定方向相互靠近或远离的两条边缘作出反应。这些细胞可以单眼或双眼驱动,但当双眼驱动时,细胞对每只眼睛的刺激以相同方式作出反应,这表明此类细胞必定从每只眼睛接收双重且相反的输入。另一种细胞类型总是双眼驱动,对两个视网膜上相反方向的运动作出反应,这表明此类细胞必定从两只眼睛接收完全相反的连接。

  3. 为研究此类细胞在皮质中如何聚集在一起而进行的长程穿透显示,它们排列成小群或簇,被该区域中如此显著存在的共同方向选择性细胞彼此分隔开。因此,具有一种布线机制的细胞被接收另一种更常见解剖布线类型的细胞彼此分隔开。

相似文献

1
Cells responding to changing image size and disparity in the cortex of the rhesus monkey.
J Physiol. 1974 Nov;242(3):827-41. doi: 10.1113/jphysiol.1974.sp010736.
2
Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex.
J Physiol. 1978 Apr;277:273-90. doi: 10.1113/jphysiol.1978.sp012272.
4
Aberrant visual projections in the Siamese cat.
J Physiol. 1971 Oct;218(1):33-62. doi: 10.1113/jphysiol.1971.sp009603.
6
Fucntional specialization and binocular interaction in the visual areas of rhesus monkey prestriate cortex.
Proc R Soc Lond B Biol Sci. 1979 Jun 4;204(1157):379-97. doi: 10.1098/rspb.1979.0034.
7
Receptive fields and functional architecture of monkey striate cortex.
J Physiol. 1968 Mar;195(1):215-43. doi: 10.1113/jphysiol.1968.sp008455.
9
Center-surround interactions in the middle temporal visual area of the owl monkey.
J Neurophysiol. 2000 Nov;84(5):2658-69. doi: 10.1152/jn.2000.84.5.2658.

引用本文的文献

1
Optimal Estimation of Local Motion-in-Depth with Naturalistic Stimuli.
J Neurosci. 2025 Feb 19;45(8):e0490242024. doi: 10.1523/JNEUROSCI.0490-24.2024.
2
Hierarchical computation of 3D motion across macaque areas MT and FST.
Cell Rep. 2023 Dec 26;42(12):113524. doi: 10.1016/j.celrep.2023.113524. Epub 2023 Dec 6.
3
Two views on the cognitive brain.
Nat Rev Neurosci. 2021 Jun;22(6):359-371. doi: 10.1038/s41583-021-00448-6. Epub 2021 Apr 15.
4
Reduced surround suppression in monocular motion perception.
J Vis. 2021 Jan 4;21(1):10. doi: 10.1167/jov.21.1.10.
5
Examining motion speed processing in schizophrenia using the flash lag illusion.
Schizophr Res Cogn. 2019 Oct 31;19:100165. doi: 10.1016/j.scog.2019.100165. eCollection 2020 Mar.
6
Dichoptic vision in the absence of attention: neither fusion nor rivalry.
Sci Rep. 2019 Sep 9;9(1):12904. doi: 10.1038/s41598-019-49534-x.
7
Universal Mechanisms and the Development of the Face Network: What You See Is What You Get.
Annu Rev Vis Sci. 2019 Sep 15;5:341-372. doi: 10.1146/annurev-vision-091718-014917. Epub 2019 Jun 21.
8
Binocular Mechanisms of 3D Motion Processing.
Annu Rev Vis Sci. 2017 Sep 15;3:297-318. doi: 10.1146/annurev-vision-102016-061259. Epub 2017 Jul 26.
10
Anticlockwise or clockwise? A dynamic Perception-Action-Laterality model for directionality bias in visuospatial functioning.
Neurosci Biobehav Rev. 2016 Sep;68:669-693. doi: 10.1016/j.neubiorev.2016.06.032. Epub 2016 Jun 24.

本文引用的文献

1
RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT.
J Neurophysiol. 1965 Mar;28:229-89. doi: 10.1152/jn.1965.28.2.229.
2
The neural mechanism of binocular depth discrimination.
J Physiol. 1967 Nov;193(2):327-42. doi: 10.1113/jphysiol.1967.sp008360.
5
Cortical projections from two prestriate areas in the monkey.
Brain Res. 1971 Nov;34(1):19-35. doi: 10.1016/0006-8993(71)90348-9.
10
Binocular neurons which signal change of disparity in area 18 of cat visual cortex.
Nat New Biol. 1973 Jan 24;241(108):123-4. doi: 10.1038/newbio241123a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验