Suppr超能文献

Enhancement of macrophage adenylate cyclase by microtubule disrupting drugs.

作者信息

Grunspan-Swirsky A, Pick E

机构信息

Department of Human Microbiology, Tel-Aviv University, Sackler School of Medicine, Israel.

出版信息

Immunopharmacology. 1978 Dec;1(1):71-82. doi: 10.1016/0162-3109(78)90010-3.

Abstract

The accumulation of cyclic adenosine 3',5'-monophosphate (cAMP) in guinea-pig macrophages exposed to the adenylate cyclase (AC) stimulators prostaglandin E1 (PGE1) and isoproterenol (IP), was markedly enhanced by pretreatment of the cells with colchicine, vinblastine, and podophyllotoxin--agents which prevent microtubule assembly. The same agents did not augment basal cAMP levels. The facilitating effect of the drugs on the response to PGE1 and IP developed both in the absence and presence of a phosphodiesterase (PDE) inhibitor. The same drugs also enhanced the accumulation of cAMP induced by cholera toxin (CT) but the presence of a PDE inhibitor was required for such enhancement to become evident. Pretreatment of macrophages with cytochalasin B, an agent interfering with microfilament function, had no effect on the responsiveness of the cells to AC stimulators. The microtubule stabilizer, deuterium oxide (D2O) partially reversed the colchicine effect. Microtubule disrupting drugs did not block the release of cAMP from the cells into the surrounding medium. Macrophages incubated as monolayers or in suspension showed the same degree of increased responsiveness to stimulators after preexposure to colchicine. Preincubation with the ionophore A23187, which elevates the intracellular concentration of Ca2+, also enhanced the stimulation of AC by PGE1 and IP. Microtubule disrupting agents did not potentiate AC activity in broken cell preparations, whether added to the intact cells before disruption or directly to the enzyme assay mixture, nor did they affect PDE activity of macrophage sonicates. Moderate enhancement of PGE1-induced cAMP formation was also seen in colchicine- and vinblastine-treated lymphocytes. It was concluded that microtubules control the activity of AC by restricting the mobility of membrane receptors. Disruption of microtubules by drugs results in the removal of such restraints and an augmented chance of productive interactions between receptors and catalytic units of AC.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验