Suppr超能文献

在不同跨壁压力下动脉收缩的维持。

The maintenance of arterial constriction at different transmural pressures.

作者信息

Speden R N

出版信息

J Physiol. 1973 Mar;229(2):361-81. doi: 10.1113/jphysiol.1973.sp010143.

Abstract
  1. Distensibility characteristics of the isolated, perfused rabbit ear artery were measured in the presence and absence of different concentrations of adrenaline.2. The major effect of varying the adrenaline concentration was to vary the radius at which active tension first developed. This radius was inversely related to the adrenaline concentration.3. Increases in radius of the constricted artery produced by pressures rising from 40 to 150 mm Hg were small relative to the increase in wall stress. Distension was opposed largely by increases in active tension. With some arteries (60%) an increase in pressure between 30 and 80 mm Hg was associated with a decrease in radius when low concentrations of adrenaline were present.4. The ability of the constricted ear artery to resist distension at transmural pressures of 100 mm Hg was uninfluenced by the adrenaline concentration provided constriction exceeded 28% of maximal. The static, incremental, circumferential modulus of the artery wall varied little from a value of 6.5 x 10(6) dyn/cm(2).5. The maximum active tension required to maintain constriction was inversely related to the degree of constriction and hence to the adrenaline concentration. The modulus for fully or near-fully activated muscle was 18.5 x 10(6) dyn/cm(2) of media.6. Muscle function deteriorated following exposure of constricted arteries to pressures sufficient to overwhelm the constriction.7. These observations may be explained by a negative feedback system where the contractile elements are arranged in parallel with a length sensor element whose setting is determined by the concentration of adrenaline. The length sensor may be the cell membrane. It is concluded that a radius increase may be a primary stimulus for blood flow auto-regulation.
摘要
  1. 在存在和不存在不同浓度肾上腺素的情况下,测量离体灌注兔耳动脉的扩张性特征。

  2. 改变肾上腺素浓度的主要作用是改变主动张力首次出现时的血管半径。该半径与肾上腺素浓度呈负相关。

  3. 压力从40毫米汞柱升至150毫米汞柱时,收缩动脉半径的增加相对于壁应力的增加较小。扩张主要受到主动张力增加的对抗。对于一些动脉(60%),当存在低浓度肾上腺素时,30至80毫米汞柱之间的压力增加与半径减小有关。

  4. 当收缩超过最大收缩的28%时,肾上腺素浓度对收缩的耳动脉在100毫米汞柱跨壁压力下抵抗扩张的能力没有影响。动脉壁的静态、增量、周向模量与6.5×10⁶达因/平方厘米的值变化不大。

  5. 维持收缩所需的最大主动张力与收缩程度呈负相关,因此与肾上腺素浓度呈负相关。完全或接近完全激活肌肉的模量为中膜18.5×10⁶达因/平方厘米。

  6. 收缩的动脉暴露于足以克服收缩的压力后,肌肉功能恶化。

  7. 这些观察结果可能由一个负反馈系统来解释,其中收缩元件与一个长度传感器元件并联排列,其设置由肾上腺素浓度决定。长度传感器可能是细胞膜。得出结论,半径增加可能是血流自动调节的主要刺激因素。

相似文献

2
Muscle load and constriction of the rabbit ear artery.兔耳动脉的肌肉负荷与收缩
J Physiol. 1975 Jul;248(3):531-53. doi: 10.1113/jphysiol.1975.sp010987.
4
Active reactions of the rabbit ear artery to distension.兔耳动脉对扩张的主动反应。
J Physiol. 1984 Jun;351:631-43. doi: 10.1113/jphysiol.1984.sp015267.

引用本文的文献

2
Active reactions of the rabbit ear artery to distension.兔耳动脉对扩张的主动反应。
J Physiol. 1984 Jun;351:631-43. doi: 10.1113/jphysiol.1984.sp015267.
3
Length-dependent activation and sensitivity in arterial ring segments.
Ann Biomed Eng. 1984;12(5):481-96. doi: 10.1007/BF02363918.
7
Muscle load and constriction of the rabbit ear artery.兔耳动脉的肌肉负荷与收缩
J Physiol. 1975 Jul;248(3):531-53. doi: 10.1113/jphysiol.1975.sp010987.
10
Contribution of smooth muscle to arterial wall mechanics.
Basic Res Cardiol. 1979 Jan-Feb;74(1):1-9. doi: 10.1007/BF01907680.

本文引用的文献

1
The static elastic properties of the arterial wall.动脉壁的静态弹性特性。
J Physiol. 1961 May;156(3):445-57. doi: 10.1113/jphysiol.1961.sp006686.
3
On the physical equilibrium of small blood vessels.论小血管的物理平衡
Am J Physiol. 1951 Feb;164(2):319-29. doi: 10.1152/ajplegacy.1951.164.2.319.
4
A study of elastic properties of a 550-microns artery in vitro.
Am J Physiol. 1962 Dec;203:1153-60. doi: 10.1152/ajplegacy.1962.203.6.1153.
6
Adrenergic transmission in small arteries.小动脉中的肾上腺素能传递。
Nature. 1967 Oct 21;216(5112):289-90. doi: 10.1038/216289a0.
7
Two-dimensional in-vitro studies of femoral arterial walls of the dog.
Circ Res. 1968 Jun;22(6):829-40. doi: 10.1161/01.res.22.6.829.
10
Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries.
Am J Physiol. 1969 Dec;217(6):1644-51. doi: 10.1152/ajplegacy.1969.217.6.1644.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验