Suppr超能文献

嗜热栖热菌在自然环境中的生长速率。

Growth rates of Sulfolobus acidocaldarius in nature.

作者信息

Mosser J L, Bohlool B B, Brock T D

出版信息

J Bacteriol. 1974 Jun;118(3):1075-81. doi: 10.1128/jb.118.3.1075-1081.1974.

Abstract

Turnover times for water passing through several Sulfolobus acidocaldarius-containing springs were determined by measuring the dilution rates of small amounts of sodium chloride that were added to the springs. Chloride was diluted out exponentially, while concentrations of the bacteria remained constant. Additionally, temperature, pH, and chemical composition of the springs also remained constant during the time that the chloride was being diluted. The springs are thus steady-state systems, and since the rates of bacterial growth must be at least equal to the chloride dilution rates, minimal doubling times for the bacterial populations can be calculated. Half-times for chloride dilution, equivalent to bacterial doubling times, were on the order of 10 to 20 h for springs ranging in volume from about 20 to 2,000 liters, but approximately 30 days for two larger springs of about 1 million liters. Formaldehyde-fixed cells of a serologically distinguishable strain of S. acidocaldarius were also added as markers to four of the smaller springs, and the dilution rates of these bacteria were compared with the chloride dilution rates. The rates agreed reasonably well, thus verifying the growth rates obtained from the chloride dilution rates. In three springs, exponential growth was studied by draining the springs and allowing them to refill with bacteria-free water. Exponential doubling times were on the order of a few hours, much more rapid than steady-state doubling times. The methods used in this work may have wider utility in aquatic environments.

摘要

通过测量添加到含有嗜酸热硫化叶菌的几个泉水中的少量氯化钠的稀释率,确定了流经这些泉水的水的周转时间。氯化物呈指数稀释,而细菌浓度保持恒定。此外,在氯化物稀释期间,泉水的温度、pH值和化学成分也保持不变。因此,这些泉水是稳态系统,并且由于细菌生长速率必须至少等于氯化物稀释速率,所以可以计算出细菌群体的最小倍增时间。对于体积约为20升至2000升的泉水,氯化物稀释的半衰期(相当于细菌倍增时间)约为10至20小时,但对于两个约100万升的较大泉水,半衰期约为30天。还将一种血清学上可区分的嗜酸热硫化叶菌菌株的甲醛固定细胞作为标记物添加到四个较小的泉水中,并将这些细菌的稀释率与氯化物稀释率进行比较。两者速率相当吻合,从而验证了从氯化物稀释率获得的生长速率。在三个泉水中,通过排空泉水并使其重新注入无菌水来研究指数生长。指数倍增时间约为几小时,比稳态倍增时间快得多。这项工作中使用的方法在水生环境中可能有更广泛的用途。

相似文献

1
Growth rates of Sulfolobus acidocaldarius in nature.嗜热栖热菌在自然环境中的生长速率。
J Bacteriol. 1974 Jun;118(3):1075-81. doi: 10.1128/jb.118.3.1075-1081.1974.
6
Ecology of sulfur-oxidizing bacteria in hot acid soils.酸性热土壤中硫氧化细菌的生态学
J Bacteriol. 1972 Aug;111(2):343-50. doi: 10.1128/jb.111.2.343-350.1972.
9
Bacterial communities of the microbial mats of Chokrak sulfide springs.乔克拉克硫化物泉微生物席的细菌群落。
Arch Microbiol. 2019 Aug;201(6):795-805. doi: 10.1007/s00203-019-01648-6. Epub 2019 Mar 14.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验