Suppr超能文献

乳酸链球菌中乳糖代谢的丧失。

Loss of lactose metabolism in lactic streptococci.

作者信息

McKay L L, Baldwin K A, Zottola E A

出版信息

Appl Microbiol. 1972 Jun;23(6):1090-6. doi: 10.1128/am.23.6.1090-1096.1972.

Abstract

Lactose-negative mutants occurred spontaneously in broth cultures of Streptococcus lactis C(2)F. Instability of lactose metabolism was noted in other strains of S. lactis, in strains of S. cremoris, and in S. diacetilactis. Colonies of S. lactis C(2)F grown with lactose as the carbohydrate source also possessed lac(-) cells. Treatment of lactic streptococci with the mutagen acriflavine (AF) increased the number of non-lactose-fermenting variants. The effect of AF on growth and on loss of lactose-fermenting ability in S. lactis C(2)F was consequently further examined. The presence of AF appears to favor competitively the growth of spontaneously occurring lactose-negative cells and appears to act in the conversion of lactose-positive to non-lactose-fermenting cells. The lactose-negative mutants partially revert to lactose-positive variants which remain defective in lactose metabolism and remain unable to coagulate milk. The lactose-negative cells become dominant in continuous culture growth and provide evidence that alterations in the characteristics of starter strains can be produced by continuous culture, in this case, the complete loss in ability to ferment lactose.

摘要

乳糖阴性突变体在乳酸乳球菌C(2)F的肉汤培养物中自发出现。在其他乳酸乳球菌菌株、乳脂乳球菌菌株和双乙酰乳球菌中也发现了乳糖代谢的不稳定性。以乳糖作为碳水化合物来源培养的乳酸乳球菌C(2)F菌落中也存在lac(-)细胞。用诱变剂吖啶黄素(AF)处理乳酸链球菌会增加非乳糖发酵变体的数量。因此,进一步研究了AF对乳酸乳球菌C(2)F生长和乳糖发酵能力丧失的影响。AF的存在似乎在竞争上有利于自发产生的乳糖阴性细胞的生长,并且似乎在乳糖阳性细胞向非乳糖发酵细胞的转化中起作用。乳糖阴性突变体部分回复为乳糖阳性变体,但这些变体在乳糖代谢方面仍然存在缺陷,并且仍然无法使牛奶凝固。在连续培养生长中,乳糖阴性细胞占主导地位,这表明连续培养可以导致发酵剂菌株特性的改变,在这种情况下,就是完全丧失发酵乳糖的能力。

相似文献

1
Loss of lactose metabolism in lactic streptococci.
Appl Microbiol. 1972 Jun;23(6):1090-6. doi: 10.1128/am.23.6.1090-1096.1972.
2
Occurence of lactose-negative mutants in chemostat cultures of lactic streptococci.
Can J Microbiol. 1975 Mar;21(3):245-51. doi: 10.1139/m75-035.
3
Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.
J Bacteriol. 1970 Jun;102(3):804-9. doi: 10.1128/jb.102.3.804-809.1970.
4
Characterization of lac+ transductants of Streptococcus lactis.
Appl Microbiol. 1974 Nov;28(5):753-8. doi: 10.1128/am.28.5.753-758.1974.
5
Transduction of lactose metabolism in Streptococcus lactis C2.
J Bacteriol. 1973 Sep;115(3):810-5. doi: 10.1128/jb.115.3.810-815.1973.
6
Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
J Bacteriol. 1974 Sep;119(3):830-9. doi: 10.1128/jb.119.3.830-839.1974.
7
Lysogeny in lactic streptococci producing and not producing nisin.
Appl Microbiol. 1973 Feb;25(2):305-8. doi: 10.1128/am.25.2.305-308.1973.
9
Stimulation of lactic streptococci in milk by -galactosidase.
Appl Microbiol. 1972 Jan;23(1):21-5. doi: 10.1128/am.23.1.21-25.1972.
10
Heterofermentative carbohydrate metabolism of lactose-impaired mutants of Streptococcus lactis.
J Bacteriol. 1972 Dec;112(3):1335-45. doi: 10.1128/jb.112.3.1335-1345.1972.

引用本文的文献

3
Next-generation sequencing as an approach to dairy starter selection.
Dairy Sci Technol. 2015;95(5):545-568. doi: 10.1007/s13594-015-0227-4. Epub 2015 Apr 24.
6
Evidence for plasmid-associated lactose metabolism inLactobacillus casei subsp.casei.
Curr Microbiol. 1978;1(3):141-4. doi: 10.1007/BF02601666.
7
Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis.
PLoS One. 2012;7(12):e51663. doi: 10.1371/journal.pone.0051663. Epub 2012 Dec 11.
8
A kinetic study on the plasmid stability of three Lactococcus lactis strains.
J Ind Microbiol Biotechnol. 2007 Nov;34(11):729-37. doi: 10.1007/s10295-007-0249-x. Epub 2007 Aug 28.
10
Development and characterization of lactose-positive pediococcus species for milk fermentation.
Appl Environ Microbiol. 1996 Mar;62(3):936-41. doi: 10.1128/aem.62.3.936-941.1996.

本文引用的文献

1
THE EFFECT OF ACRIDINE DYES ON MATING TYPE FACTORS IN ESCHERICHIA COLI.
Proc Natl Acad Sci U S A. 1960 Jan;46(1):57-64. doi: 10.1073/pnas.46.1.57.
2
I. : Lysogenic Conversions in Bacteria.
Bacteriol Rev. 1959 Dec;23(4):202-12. doi: 10.1128/br.23.4.202-212.1959.
3
Growth and nisin production of a strain of Streptococcus lactis.
J Gen Microbiol. 1951 Feb;5(1):208-21. doi: 10.1099/00221287-5-1-208.
4
CHARACTERIZATION OF DNA FROM A PROTEUS STRAIN HARBORING AN EPISOME.
J Mol Biol. 1964 Aug;9:576-88. doi: 10.1016/s0022-2836(64)80228-x.
5
Lysogeny.
Bacteriol Rev. 1953 Dec;17(4):269-337. doi: 10.1128/br.17.4.269-337.1953.
6
Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci.
J Bacteriol. 1969 Aug;99(2):603-10. doi: 10.1128/jb.99.2.603-610.1969.
7
Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.
J Bacteriol. 1970 Jun;102(3):804-9. doi: 10.1128/jb.102.3.804-809.1970.
8
9
Reversion instability of an extreme polar mutant of the galactose operon.
Genetics. 1967 Jun;56(2):331-40. doi: 10.1093/genetics/56.2.331.
10
Nature of lactose-fermenting Salmonella strains obtained from clinical sources.
J Bacteriol. 1969 Oct;100(1):35-41. doi: 10.1128/jb.100.1.35-41.1969.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验