Suppr超能文献

大鼠丘脑对运动神经刺激产生的触须运动的反应。

Responses in the rat thalamus to whisker movements produced by motor nerve stimulation.

作者信息

Brown A W, Waite P M

出版信息

J Physiol. 1974 Apr;238(2):387-401. doi: 10.1113/jphysiol.1974.sp010531.

Abstract
  1. The effect of electrical stimulation of the motor nerve supplying the whiskers on the activity of single cells in the vibrissal region of the ventrobasal complex of the thalamus has been studied in rats under urethane anaesthesia.2. The stimulation caused protraction of the ipsilateral whiskers. 60% of the cells which fired to mechanical movements of the whiskers were found to respond to this electrical stimulus with 1-2 impulses at short latency (average 7.7 msec), provided the stimulus was sufficient to move the whiskers.3. When the moving whiskers hit a barrier, 92% of the cells responded to the stimulus. The most effective position of the barrier was in front of the whiskers, although other positions often produced a response as well. Static displacement of the whiskers, particularly in the forward direction, could abolish the response or increase its latency.4. The following-frequencies for these cells were 5-10 stimuli/sec. Combinations of electrical stimuli with mechanical ramp movements of the whiskers showed that similar recovery times followed both types of stimuli.5. These results are compared with those reported from studies in the afferent nerve fibres after electrical stimulation of the motor nerve and also with responses in the thalamus following mechanical movements of the whiskers. The possible importance of the latency of these sensory responses is considered.
摘要
  1. 在乌拉坦麻醉的大鼠中,研究了电刺激支配触须的运动神经对丘脑腹侧基底复合体触须区域单个细胞活动的影响。

  2. 刺激导致同侧触须前伸。如果刺激足以使触须移动,那么在对触须机械运动产生放电的细胞中,60%的细胞会在短潜伏期(平均7.7毫秒)内以1 - 2个冲动对这种电刺激作出反应。

  3. 当移动的触须碰到障碍物时,92%的细胞对该刺激作出反应。障碍物最有效的位置在触须前方,不过其他位置也常常会引发反应。触须的静态位移,尤其是向前的位移,可能会消除反应或增加其潜伏期。

  4. 这些细胞的跟随频率为5 - 10次刺激/秒。电刺激与触须的机械斜坡运动相结合的研究表明,两种类型的刺激之后恢复时间相似。

  5. 将这些结果与在运动神经电刺激后传入神经纤维的研究报告结果以及触须机械运动后丘脑的反应进行了比较。考虑了这些感觉反应潜伏期的可能重要性。

相似文献

1
Responses in the rat thalamus to whisker movements produced by motor nerve stimulation.
J Physiol. 1974 Apr;238(2):387-401. doi: 10.1113/jphysiol.1974.sp010531.
2
The responses of cells in the rat thalamus to mechanical movements of the whiskers.
J Physiol. 1973 Jan;228(2):541-61. doi: 10.1113/jphysiol.1973.sp010099.
3
Somatotopic organization of vibrissal responses in the ventro-basal complex of the rat thalamus.
J Physiol. 1973 Jan;228(2):527-40. doi: 10.1113/jphysiol.1973.sp010098.
4
Spatial gradients and inhibitory summation in the rat whisker barrel system.
J Neurophysiol. 1996 Jul;76(1):130-40. doi: 10.1152/jn.1996.76.1.130.
5
Thalamocortical response transformation in the rat vibrissa/barrel system.
J Neurophysiol. 1989 Feb;61(2):311-30. doi: 10.1152/jn.1989.61.2.311.
6
Response of ventrobasal thalamic cells to hair displacement on the face of the waking monkey.
J Physiol. 1975 Sep;250(2):385-407. doi: 10.1113/jphysiol.1975.sp011061.
8
Behavioral modulation of tactile responses in the rat somatosensory system.
J Neurosci. 1999 Sep 1;19(17):7603-16. doi: 10.1523/JNEUROSCI.19-17-07603.1999.
10
State-related modulation of thalamic somatosensory responses in the awake monkey.
J Neurophysiol. 1992 Feb;67(2):305-17. doi: 10.1152/jn.1992.67.2.305.

引用本文的文献

1
The mesencephalic-hypoglossal nuclei loop as a possible central pattern generator for rhythmical whisking in rats.
Exp Brain Res. 2018 Nov;236(11):2899-2911. doi: 10.1007/s00221-018-5347-7. Epub 2018 Aug 2.
2
Organization of sensory feature selectivity in the whisker system.
Neuroscience. 2018 Jan 1;368:70-80. doi: 10.1016/j.neuroscience.2017.09.014. Epub 2017 Sep 14.
3
Surround Integration Organizes a Spatial Map during Active Sensation.
Neuron. 2017 Jun 21;94(6):1220-1233.e5. doi: 10.1016/j.neuron.2017.04.026. Epub 2017 May 11.
5
Vibrissa Self-Motion and Touch Are Reliably Encoded along the Same Somatosensory Pathway from Brainstem through Thalamus.
PLoS Biol. 2015 Sep 22;13(9):e1002253. doi: 10.1371/journal.pbio.1002253. eCollection 2015.
6
Modulation of artificial whisking related signals in barrel cortex.
J Neurophysiol. 2015 Mar 1;113(5):1287-301. doi: 10.1152/jn.00809.2014. Epub 2014 Dec 10.
8
Activation and measurement of free whisking in the lightly anesthetized rodent.
Nat Protoc. 2014 Aug;9(8):1792-802. doi: 10.1038/nprot.2014.119. Epub 2014 Jul 3.
9
Neuromodulation of whisking related neural activity in superior colliculus.
J Neurosci. 2014 May 28;34(22):7683-95. doi: 10.1523/JNEUROSCI.0444-14.2014.
10
Neuronal basis for object location in the vibrissa scanning sensorimotor system.
Neuron. 2011 Nov 3;72(3):455-68. doi: 10.1016/j.neuron.2011.10.009.

本文引用的文献

2
THE FUNCTIONAL PROPERTIES OF VENTROBASAL THALAMIC NEURONSSTUDIED IN UNANESTHETIZED MONKEYS.
J Neurophysiol. 1963 Sep;26:775-806. doi: 10.1152/jn.1963.26.5.775.
3
Response of cortical neurons to variation of stimulus intensity and locus.
Exp Neurol. 1961 Jun;3:570-87. doi: 10.1016/s0014-4886(61)80006-x.
4
Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli.
J Neurophysiol. 1957 Jul;20(4):374-407. doi: 10.1152/jn.1957.20.4.374.
6
[On the microstructure of receptors on sinus hair].
Z Zellforsch Mikrosk Anat. 1966;75(1):339-65.
7
The ultrastructure and innervation of rat vibrissae.
J Comp Neurol. 1966 Mar;126(3):423-35. doi: 10.1002/cne.901260305.
8
The projection of afferent pathways on the thalamus of the rat.
J Comp Neurol. 1965 Jun;124(3):377-90. doi: 10.1002/cne.901240308.
9
Coding of somatic sensory input by vibrissae neurons in the rat's trigeminal ganglion.
Brain Res. 1969 Jan;12(1):138-56. doi: 10.1016/0006-8993(69)90061-4.
10
Receptor field characteristics of single cells in the rat spinal trigeminal complex.
Exp Neurol. 1968 Jun;21(2):236-43. doi: 10.1016/0014-4886(68)90142-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验