Sytkowski A J, Vallee B L
Biochemistry. 1979 Sep 18;18(19):4095-9. doi: 10.1021/bi00586a006.
The noncatalytic and catalytic zinc atoms of horse liver alcohol dehydrogenase, [(LADH)Zn2Zn2] or LADH, have been replaced differentially with 109Cd by equilibrium dialysis, resulting in two new enzymatically active species, [(LADH)109Cd2Zn2] and [(LADH)109Cd2109Cd2]. The UV difference spectra of the cadmium enzymes vs. native [(LADH)Zn2Zn2] reveal maxima at 240 nm with molar absorptivities, delta epsilon 240, of 1.6 X 10(4) M-1 cm-1 per noncatalytic 109Cd atom and 0.9 X 10(4) M-1 cm-1 per catalytic 109Cd atom, consistent with coordination of the metals by four and two thiolate ligands, respectively, strikingly similar to the 250-nm charge-transfer absorbance in metallothionein. Carboxymethylation of the Cys-46 ligand to the catalytic metal in LADH presumably lowers the overall stability constant of the coordination complex and results in loss of catalytic 109Cd or catalytic cobalt but not catalytic zinc from the enzyme.