Suppr超能文献

Superstructural differences between chromatin in nuclei and in solution are revealed by kinetics of micrococcal nuclease digestion.

作者信息

Levinger L F, Carter C W

出版信息

J Biol Chem. 1979 Oct 10;254(19):9477-87.

PMID:489546
Abstract

Digestion of chromatin in nuclei by micrococcal nuclease, measured as the change in the concentration of monomer-length DNA with time, displays Michaelis-Menten kinetics. Redigestion of soluble chromatin prepared from nuclei by micrococcal nuclease treatment, however, is apparently first order in enzyme and independent of chromatin concentration. This qualitative difference results from an increase in the apparent second order rate constant, kcat/Km, for liberation of monomer DNA: the apparent Km for soluble chromatin is lower by close to 3 orders of magnitude than that for chromatin in nuclei, whereas kcat decreases by less than 1 order of magnitude. Neither the integrity of the nuclear membrane nor the presence of histone H1 contributes to the high Michaelis constant characteristic of chromatin in nuclei. Moreover, differences due to the buffers used for digestion and redigestion are minimal. Low catalytic efficiency is, however, correlated with the presence of higher order chromatin superstructure. Micrococcal nuclease added to soluble chromatin under nondigesting conditions at low ionic strength (I = 0.002) co-sediments with chromatin in sucrose gradients. In 0.15 M NaCl, added nuclease no longer sediments with chromatin and redigestion kinetics become first order in both enzyme and substrate. Kinetic analysis of this type may afford an assay for native, higher order structures in chromatin. Our results suggest that micrococcal nuclease binds to soluble chromatin through additional interactions not present in nuclei, which may be partly ionic in nature.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验