Heggtveit H A
Bull World Health Organ. 1969;41(6):865-72.
Electron-microscope studies of experimental models of myocardial ischaemia have provided basic information on the pathogenesis of hypoxic heart injury. Correlation of ultrastructural changes with biochemical data confirms the importance of catecholamine release and ionic shifts in the early evolution of ischaemic injury. An altered cellular metabolism induced by ischaemia causes rapid depletion of glycogen and is followed quickly by alterations in the nucleus, the mitochondria and the sarcotubular system; the myofibril is the organelle most resistant to hypoxia.Postmortem autolysis mimics early ischaemic change very closely and it probably has an initial hypoxic basis. Significant hypoxic-autolytic changes may begin during the agonal state. The time elapsing and the techniques of tissue preservation are critical in determining the amount of artefact. At present it is unrealistic to expect to obtain acutely ischaemic human myocardium soon enough after death to be of value in the estimation of the degree or duration of ischaemia by electron-microscope techniques. Rapidly progressive autolytic changes preclude the meaningful morphological assessment of hypoxic change at the ultrastructural level.
心肌缺血实验模型的电子显微镜研究为缺氧性心脏损伤的发病机制提供了基础信息。超微结构变化与生化数据的相关性证实了儿茶酚胺释放和离子转移在缺血性损伤早期演变中的重要性。缺血诱导的细胞代谢改变导致糖原迅速耗尽,随后细胞核、线粒体和肌管系统很快发生改变;肌原纤维是对缺氧最具抵抗力的细胞器。死后自溶与早期缺血变化非常相似,并且可能有初始的缺氧基础。显著的缺氧性自溶变化可能在濒死期开始。时间的流逝和组织保存技术对于确定人为假象的数量至关重要。目前,期望在死后尽快获得急性缺血的人类心肌,以便通过电子显微镜技术评估缺血程度或持续时间,这是不现实的。快速进展的自溶变化排除了在超微结构水平上对缺氧变化进行有意义的形态学评估。