Suppr超能文献

地松鼠红细胞中主动钠钾转运和被动通透性的温度适应性

Temperature adaptation of active sodium-potassium transport and of passive permeability in erythrocytes of ground squirrels.

作者信息

Kimzey S L, Willis J S

出版信息

J Gen Physiol. 1971 Dec;58(6):634-49. doi: 10.1085/jgp.58.6.634.

Abstract

Unidirectional active and passive fluxes of (42)K and (24)Na were measured in red blood cells of ground squirrels (hibernators) and guinea pigs (nonhibernators). As temperature is lowered, "active" (ouabain-sensitive) K influx and Na efflux were more greatly diminished in guinea pig cells than in those of ground squirrels. The fraction of total K influx which is ouabain sensitive in red blood cells of ground squirrels was virtually constant at all temperatures, whereas it decreased abruptly in guinea pig cells as temperature was lowered. All the passive fluxes (i.e., Na influx, K efflux, and ouabain-insensitive K influx and Na efflux) decreased logarithmically with decrease in temperature in both species, but in ground squirrels the temperature dependence (Q(10) 2.5-3.0) was greater than in guinea pig (Q(10) 1.6-1.9). Thus, red blood cells of ground squirrel are able to resist loss of K and gain of Na at low temperature both because of relatively greater Na-K transport (than in cells of nonhibernators) and because of reduced passive leakage of ions.

摘要

在地松鼠(冬眠动物)和豚鼠(非冬眠动物)的红细胞中测量了(^{42}K)和(^{24}Na)的单向主动和被动通量。随着温度降低,豚鼠细胞中“主动”(哇巴因敏感)的钾离子内流和钠离子外流比地松鼠细胞中的减少得更多。在地松鼠红细胞中,哇巴因敏感的钾离子总内流比例在所有温度下实际上都保持恒定,而在豚鼠细胞中,随着温度降低,该比例会突然下降。在这两个物种中,所有被动通量(即钠离子内流、钾离子外流以及哇巴因不敏感的钾离子内流和钠离子外流)都随着温度降低呈对数下降,但地松鼠的温度依赖性((Q_{10})为(2.5 - 3.0))大于豚鼠((Q_{10})为(1.6 - 1.9))。因此,地松鼠的红细胞能够在低温下抵抗钾离子的流失和钠离子的增加,这既是因为相对更大的钠钾转运(比非冬眠动物的细胞),也是因为离子的被动泄漏减少。

相似文献

2
Cultured cells from renal cortex of hibernators and nonhibernators. Regulation of cell K+ at low temperature.
Biochim Biophys Acta. 1976 Jul 1;436(3):628-51. doi: 10.1016/0005-2736(76)90446-6.
5
Kinetics of the sodium pump in red cells of different temperature sensitivity.
J Gen Physiol. 1982 Jun;79(6):1115-30. doi: 10.1085/jgp.79.6.1115.
7
The effect of amiloride on sodium and potassium fluxes in red cells.
J Physiol. 1973 Mar;229(3):709-18. doi: 10.1113/jphysiol.1973.sp010162.
8
Na-K pump and Na-K-ATPase: disparity of their temperature sensitivity.
Am J Physiol. 1978 Nov;235(5):C159-67. doi: 10.1152/ajpcell.1978.235.5.C159.
10
The effect of ouabain and external potassium on the ion transport of rabbit red cells.
J Gen Physiol. 1969 Nov;54(5):576-88. doi: 10.1085/jgp.54.5.576.

引用本文的文献

1
Role of channels in the permeability of murine red blood cells I. Stopped-flow and hematological studies.
bioRxiv. 2025 May 18:2025.03.05.639948. doi: 10.1101/2025.03.05.639948.
2
A Novel Stopped-Flow Assay for Quantitating Carbonic-Anhydrase Activity and Assessing Red-Blood-Cell Hemolysis.
Front Physiol. 2017 Mar 28;8:169. doi: 10.3389/fphys.2017.00169. eCollection 2017.
3
Substrate-specific changes in mitochondrial respiration in skeletal and cardiac muscle of hibernating thirteen-lined ground squirrels.
J Comp Physiol B. 2014 Apr;184(3):401-14. doi: 10.1007/s00360-013-0799-3. Epub 2014 Jan 10.
6
Cold activation of Na influx through the Na-H exchange pathway in guinea pig red cells.
J Membr Biol. 1993 Jan;131(1):43-53. doi: 10.1007/BF02258533.
9
ATP dependence of Na(+)-K+ pump of cold-sensitive and cold-tolerant mammalian red blood cells.
J Physiol. 1992 Oct;456:575-90. doi: 10.1113/jphysiol.1992.sp019354.
10
Protein-liposome interactions and their relevance to the structure and function of cell membranes.
Mol Cell Biochem. 1976 Feb 25;10(3):171-90. doi: 10.1007/BF01731688.

本文引用的文献

1
Sodium and potassium movements in human red cells.
J Physiol. 1956 Nov 28;134(2):278-310. doi: 10.1113/jphysiol.1956.sp005643.
2
The permeability of the human erythrocyte to sodium and potassium.
J Gen Physiol. 1952 May;36(1):57-110. doi: 10.1085/jgp.36.1.57.
3
Cation movements in the high sodium erythrocyte of the cat.
J Gen Physiol. 1967 Jul;50(6):1751-64. doi: 10.1085/jgp.50.6.1751.
4
Resolution of pump and leak components of sodium and potassium ion transport in human erythrocytes.
J Gen Physiol. 1967 May;50(5):1201-20. doi: 10.1085/jgp.50.5.1201.
5
Characteristics of ion transport in kidney cortex of mammalian hibernators.
J Gen Physiol. 1966 Jul;49(6):1221-39. doi: 10.1085/jgp.0491221.
6
Control of membrane permeability to potassium in red blood cells.
Nature. 1968 Aug 10;219(5154):610. doi: 10.1038/219610a0.
7
Cold resistance of kidney cells of mammalian hibernators: cation transport vs. respiration.
Am J Physiol. 1968 Apr;214(4):923-8. doi: 10.1152/ajplegacy.1968.214.4.923.
8
Responses to preoptic heating and cooling in a hibernator Citellus tridecemlineatus.
Am J Physiol. 1970 Jun;218(6):1654-60. doi: 10.1152/ajplegacy.1970.218.6.1654.
10
Cold resistance of Na- K-ATPase of renal cortex of the hamster, a hibernating mammal.
Am J Physiol. 1969 Jul;217(1):321-6. doi: 10.1152/ajplegacy.1969.217.1.321.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验