Suppr超能文献

在多小型计算机系统中使用阵列处理器进行自动神经纤维计数。

Automated nerve fiber counting using an array processor in a multi-minicomputer system.

作者信息

Frykman G K, Rutherford H G, Neilsen I R

出版信息

J Med Syst. 1979;3(1-2):81-94. doi: 10.1007/BF02225467.

Abstract

It has been suggested that recovery of motor and sensory function in the site distal to a peripheral nerve lesion should be improved if the nerve bundles (fasciculi) are matched and individually sutured. Three parameters are proposed to provide quantitative data: the count of the nerve fibers that regenerate, the number of functional regenerated nerve fibers, and a measurement of end organ reinnervation. A thin cross section of a transected and repaired sciatic nerve of a mongrel cat is fixed, stained, photographed, and digitized through a microscope 6 months following nerve repair. The data arrays are then subjected to four basic processing routines: edge enhancing, thresholding, template matching, and peak detection. Finally, the peaks are counted and provide an estimate of the number of nerve fibers in the nerve under study. Comparing counts of nerve fibers proximal and distal to the transection site of the nerve provide data on the proportion of regeneration present at various times. The content of this paper is, to a large extent, describing the implementation of the needed image-processing algorithms for automated counting on the Multi-MiniComputer System (MMCS). Optimal use of the AP-120B array processor and the pipeline processing provided by using the Eclipse 200s and the Nova 3 make a marked improvement in overall throughput.

摘要

有人提出,如果将神经束(束状结构)进行匹配并单独缝合,那么周围神经损伤部位远端的运动和感觉功能恢复应该会得到改善。提出了三个参数来提供定量数据:再生神经纤维的计数、功能性再生神经纤维的数量以及终末器官再支配的测量。在神经修复6个月后,对一只杂种猫横断并修复的坐骨神经的薄切片进行固定、染色、拍照,并通过显微镜进行数字化处理。然后对数据阵列进行四个基本处理程序:边缘增强、阈值处理、模板匹配和峰值检测。最后,对峰值进行计数,并提供所研究神经中神经纤维数量的估计值。比较神经横断部位近端和远端的神经纤维计数,可以提供不同时间再生比例的数据。本文的内容在很大程度上描述了在多小型计算机系统(MMCS)上用于自动计数的所需图像处理算法的实现。AP - 120B阵列处理器的优化使用以及通过使用Eclipse 200s和Nova 3提供的流水线处理,显著提高了整体吞吐量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验