Suppr超能文献

[对冈珀茨函数推广的一项贡献]

[A contribution to the generalization of the Gompertz function].

作者信息

Wenk G

出版信息

Gegenbaurs Morphol Jahrb. 1979;125(5):611-7.

PMID:550995
Abstract

SCHARF (1976) discusses various growth models. For the Gompertz function the differential equation (Formula: see text) is used. In words: the difference between relative growth rate and relative growth acceleration is constant. On the other hand, according to WENK (1973), the differential equation (Formula: see text) applies to the Gompertz function. It can be shown mathematically that (Formula: see text) applies in general. From Eq. (2) one obtains without trouble (Formula: see text). Therefore, the property leading to the Gompertz function may be defined as follows; the logarithmic derivation of the relative growth rate is constant. Eq. (2) is applicable only in special cases. It can be extended by assuming that c is not constant, but a function of time. In this way, a great number of growth functions can be found, which have to be regarded as model-based extensions of the Gompertz function.

摘要

沙夫(1976年)讨论了各种增长模型。对于冈珀茨函数,使用了微分方程(公式:见正文)。用文字表述为:相对增长率与相对增长加速度之间的差值是恒定的。另一方面,根据温克(1973年)的说法,微分方程(公式:见正文)适用于冈珀茨函数。从数学上可以证明(公式:见正文)一般情况下是适用的。从方程(2)很容易得到(公式:见正文)。因此,导致冈珀茨函数的性质可以定义如下:相对增长率的对数导数是恒定的。方程(2)仅在特殊情况下适用。通过假设c不是恒定的,而是时间的函数,可以对其进行扩展。通过这种方式,可以找到大量的增长函数,它们必须被视为冈珀茨函数基于模型的扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验