Suppr超能文献

海马体中的同步后放电:细胞机制的模拟研究

Synchronized afterdischarges in the hippocampus: simulation studies of the cellular mechanism.

作者信息

Traub R D, Knowles W D, Miles R, Wong R K

出版信息

Neuroscience. 1984 Aug;12(4):1191-1200. doi: 10.1016/0306-4522(84)90013-7.

Abstract

Synchronized multiple bursts represent an epileptic neuronal behavior transitional between synchronized single bursts (interictal spikes) and self-sustained seizures. As described in the previous paper, synchronized multiple bursts occur in hippocampal slices treated with picrotoxin. Multiple bursts consist of an initial prolonged depolarizing burst followed by a rhythmical series of afterdischarges. Both the initial burst and the afterdischarges are synaptically elicited. Our previously described model of the interictal spike illustrates that the generation of a single synchronized burst requires a neuronal network possessing the following properties: intrinsic bursting capability of individual neurons, the presence of recurrent excitatory connections between principal neurons and the blockade of synaptic inhibition. The model demonstrates that the generation of single synchronized bursts involves the initial excitation of one or more neurons, and the subsequent sequential spread of excitation through a population of neurons via recurrent excitatory synapses. In the present study, we examined whether this same mechanism assumed in the previous model could also allow for the generation of synchronized afterdischarges in a population of neurons. We tested the effects of manipulating three network factors: synaptic strength, synaptic density and the refractoriness in the population members following a period of excitation. We discovered that the refractory period following prolonged excitation assumed in our previous model was insufficient to allow for afterdischarge generation. Once sufficient refractoriness was introduced, afterdischarges appeared in our network of neurons. In the present study, the required refractoriness was attributed to the properties of pyramidal cell axons. In principle, such refractoriness might be located elsewhere in the network. The possible contribution of axonal properties is emphasized because of the known intermittent conduction in other axons. Our present model also reproduced other experimental data. Thus, if the network was too small or if synaptic strength was too small, then only a single synchronized burst occurred. The basic assumptions of this model are both biologically plausible and experimentally testable.

摘要

同步多发脉冲代表一种癫痫神经元行为,它介于同步单发脉冲(发作间期棘波)和自持性发作之间。如前一篇论文所述,同步多发脉冲出现在用印防己毒素处理的海马切片中。多发脉冲由一个初始的长时间去极化脉冲以及随后有节律的一系列后放电组成。初始脉冲和后放电均由突触引发。我们之前描述的发作间期棘波模型表明,单个同步脉冲的产生需要一个具有以下特性的神经元网络:单个神经元的内在爆发能力、主神经元之间存在反复的兴奋性连接以及突触抑制的阻断。该模型表明,单个同步脉冲的产生涉及一个或多个神经元的初始兴奋,以及随后兴奋通过反复的兴奋性突触在一群神经元中依次传播。在本研究中,我们研究了先前模型中假设的相同机制是否也能在一群神经元中产生同步后放电。我们测试了操纵三个网络因素的效果:突触强度、突触密度以及兴奋一段时间后群体成员的不应期。我们发现,我们之前模型中假设的长时间兴奋后的不应期不足以产生后放电。一旦引入足够的不应期,后放电就出现在我们的神经元网络中。在本研究中,所需的不应期归因于锥体细胞轴突的特性。原则上,这种不应期可能位于网络的其他地方。由于已知其他轴突存在间歇性传导,所以强调了轴突特性的可能贡献。我们目前的模型还重现了其他实验数据。因此,如果网络太小或突触强度太小,那么只会出现单个同步脉冲。该模型的基本假设在生物学上是合理的,并且可以通过实验进行验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验