Suppr超能文献

协同转运的热调节与热力学

The thermostatics and thermodynamics of cotransport.

作者信息

Naftalin R J

出版信息

Biochim Biophys Acta. 1984 Nov 21;778(1):155-75. doi: 10.1016/0005-2736(84)90459-0.

Abstract

The thermostatics of cotransport are reviewed. A static-head equilibrium state across a cotransport system, without leaks, is thought to occur when the electrochemical potential of the driven solute, B prevents net flow of the driving solute, A. For a symport this gives the relationship (formula: see text) Where n is the stoichiometric coefficient, namely the number of moles of A transported per mole of B. (2) If either a symporter with a 2:1 stoichiometric coefficient and a 1:1 symporter, or alternatively, a 1:1 symporter and a 1:1 antiporter are placed in a series membrane array, then the predicted static-head equilibrium across the entire array conflicts with the zeroth law of thermodynamics. (3) There are two major reasons for this failure of cotransport theory; these are: (A) the thermostatic relationships derived shown in Point 1 are based on the assumption that the cotransport process takes place within a closed system. However, the membrane and the external reservoirs are open to the cotransported ligands. It follows that A and B in the external reservoirs can vary independently of the changes within the cotransport process. As no chemical reaction between A and B occurs in the external solutions, reactions within the membrane phase do not affect the equilibrium between the transported ligands in the open reservoirs. (B) It is assumed that the law of mass action can be applied to the cotransport chemical reactions within the membrane phase, without any allowance for the fact that these reactions occur within a 'small thermodynamic system'. Any proper analysis of the chemical potential of the transported intermediate must consider the effects of lower order ligand-carrier forms, which coexist and compete for space with the higher order cotransported forms on the binding matrix. If account is taken of this necessity, then a simple extension of the work of Hill and Kedem (1966) J. Theor. Biol. 10, 399-441 shows that: (a) the static-head equilibrium state cannot exist; (b) the stoichiometry of cotransport, whether symport, or antiport, does not affect the static-head distribution of cotransported ligands; (c) the hypothetical net charge of the transported ligand-carrier complex does not affect static-head equilibrium; (d) the only equilibrium state where there is zero net flow of both driving and driven transported ligand is at true equilibrium when the ligands are uniformly distributed across the membrane. (4) It is deduced that cotransport is not entirely an affinity-driven, but is partially an entropy-driven process.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

本文综述了协同转运的热力学原理。对于一个无泄漏的协同转运系统,当被驱动溶质B的电化学势阻止驱动溶质A的净流动时,会出现跨系统的静水压平衡状态。对于同向转运,可得关系式(公式:见原文),其中n为化学计量系数,即每摩尔B转运的A的摩尔数。(2)如果将化学计量系数为2:1的同向转运体和1:1的同向转运体,或者一个1:1的同向转运体和一个1:1的反向转运体串联放置在膜阵列中,那么预测的整个阵列的静水压平衡与热力学第零定律相冲突。(3)协同转运理论失效有两个主要原因:(A)第1点所示的热力学关系基于协同转运过程发生在封闭系统的假设。然而,膜和外部储库对被协同转运的配体是开放的。因此,外部储库中的A和B可以独立于协同转运过程中的变化而变化。由于外部溶液中A和B之间不发生化学反应,膜相内的反应不会影响开放储库中被转运配体之间的平衡。(B)假设质量作用定律可应用于膜相内的协同转变化学反应,而未考虑这些反应发生在“小热力学系统”这一事实。对被转运中间体化学势的任何恰当分析都必须考虑低阶配体 - 载体形式的影响,它们与高阶协同转运形式在结合基质上共存并竞争空间。如果考虑到这一必要性,那么对希尔和凯德姆(1966年,《理论生物学杂志》10卷,399 - 441页)工作的简单扩展表明:(a)静水压平衡状态不可能存在;(b)协同转运的化学计量,无论是同向转运还是反向转运,都不影响被协同转运配体的静水压分布;(c)被转运配体 - 载体复合物的假设净电荷不影响静水压平衡;(d)驱动和被驱动的被转运配体净流量均为零的唯一平衡状态是当配体均匀分布在膜上时的真正平衡状态。(4)由此推断,协同转运并非完全由亲和力驱动,而是部分由熵驱动过程。(摘要截断于400字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验