Suppr超能文献

Characterization of two different calcium entry pathways in small mesenteric arteries from rat.

作者信息

Högestätt E D

出版信息

Acta Physiol Scand. 1984 Dec;122(4):483-95. doi: 10.1111/j.1748-1716.1984.tb07537.x.

Abstract

The effects of Ca2+ removal, nifedipine, and La3+ on contractions induced by 124 mM K+ and 10 microM noradrenaline (NA) were investigated in small mesenteric arteries from rat. Ring segments of the arteries were suspended between two steel wires in a 2.5 ml muscle bath, and the mechanical activity recorded "isometrically". The tonic components of the contractile responses to both K+ and NA were critically dependent on the presence of Ca2+ in the bath solution. Nifedipine effectively relaxed K+-contracted arteries, whereas those activated by NA were considerably less affected by the drug. Application of NA to arteries depolarized by K+ in the presence of nifedipine induced a sustained tonic contraction, which was only approximately 20% smaller than that elicited by NA in "standard" Krebs solution, implicating pharmacomechanical coupling. Unlike nifedipine, La3+ inhibited K+- and NA-induced contractions to approximately the same extent. Re-application of Ca2+ to "Ca2+-depleted" preparations exposed to K+ and/or NA induced concentration-dependent contractions. The experimental results suggested that the effects of K+ and NA on the membrane permeability to Ca2+ were additive. The Ca2+-induced contractions were more inhibited by nifedipine in K+-depolarized than in NA-exposed arteries. It is concluded that K+ and NA utilize partly different Ca2+ entry pathways to increase the myoplasmic Ca2+ concentration in rat mesenteric arteries. Whereas K+ seems to promote the influx Ca2+ by activation of CA2+ channels sensitive to the membrane potential, the nature of the receptor-operated Ca2+ entry pathway remains to be established.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验