Opperdoes F R, Van Roy J
Mol Biochem Parasitol. 1982 Sep;6(3):181-90. doi: 10.1016/0166-6851(82)90077-9.
To investigate whether the lysosomes of Trypanosoma brucei are capable of uptake of macromolecules after internalization by the cell, we used Triton WR-1339, a non-digestible macromolecular compound, which is known to cause a marked decrease in the density of hepatic lysosomes due to massive intralysosomal storage. Intraperitoneal administration of 0.4 g/kg Triton WR-1339 to rats infected with T. brucei led to the development of a large vacuole in the trypanosomes between nucleus and kinetoplast within 22 h. Higher doses (2 g/kg) led to the disappearance of the trypanosomes from the blood and resulted in permanent cures (greater than 100 days). Lysosomes isolated from the trypanosomes of animals treated with a sub-curative dose showed a decrease in equilibrium density of 0.03 g/cm3 in sucrose gradients. These lysosomes were partly damaged as evidenced by a reduction in latency and an increase in the non-sedimentable part of lysosomal enzymes. We conclude that acid proteinase and alpha-mannosidase-containing organelles of T. brucei take up exogenous macromolecules and must therefore be considered as true lysosomes and that Triton WR-1339 acts in T. brucei as a true lysosomotropic drug. Its trypanocidal action probably results from an interference with lysosomal function.