Suppr超能文献

谷氨酰胺合成酶在棕色固氮菌摄取和代谢甲基铵中的作用。

Role of glutamine synthetase in the uptake and metabolism of methylammonium by Azotobacter vinelandii.

作者信息

Barnes E M, Zimniak P, Jayakumar A

出版信息

J Bacteriol. 1983 Nov;156(2):752-7. doi: 10.1128/jb.156.2.752-757.1983.

Abstract

Methylammonium is a substrate for the ammonium transport system of Azotobacter vinelandii. During cellular uptake methylammonium is rapidly converted to a less polar metabolite (E. M. Barnes, Jr., and P. Zimniak, J. Bacteriol. 146:512-516, 1981). This metabolite has been isolated from A. vinelandii and identified as gamma-glutamylmethylamide by mass spectroscopy, 1H nuclear magnetic resonance spectroscopy, and cochromatography with the authentic compound. Escherichia coli also accumulated gamma-glutamylmethylamide during methylammonium uptake. The biosynthesis of gamma-glutamylmethylamide in vitro required methylammonium, ATP, L-glutamate, and a soluble cell extract from A. vinelandii. The enzyme responsible for gamma-glutamylmethylamide synthesis was glutamine synthetase. In a crude extract, L-methionine-DL-sulfoximine was equipotent in inhibiting the activities for gamma-glutamyltransferase and for the synthesis of glutamine and gamma-glutamylmethylamide. Likewise, an antiserum against the glutamine synthetase of E. coli precipitated the transferase and both synthetic activities at similar titers. During repression by growth of cells on ammonium medium, the synthesis of glutamine and gamma-glutamylmethylamide in vitro was also inhibited coordinately. A partially purified preparation of glutamine synthetase from A. vinelandii utilized methylammonium as substrate (Km = 78 mM, Vmax = 0.30 mumol/min per mg), although less efficiently than ammonium (Km = 0.089 mM, Vmax = 1.1 mumol/min per mg). The kinetic properties of glutamine synthetase with methylammonium as substrate as well as the insensitivity of this activity to inhibition by T1+ were strikingly different from methylammonium translocation. Thus, methylammonium (ammonium) translocation and intracellular trapping as glutamylamides are experimentally distinguishable processes.

摘要

甲铵是棕色固氮菌铵转运系统的一种底物。在细胞摄取过程中,甲铵迅速转化为极性较小的代谢物(小E.M.巴恩斯和P.齐姆尼亚克,《细菌学杂志》146:512 - 516,1981年)。这种代谢物已从棕色固氮菌中分离出来,并通过质谱、1H核磁共振光谱以及与纯品化合物的共色谱法鉴定为γ-谷氨酰甲酰胺。大肠杆菌在摄取甲铵时也积累γ-谷氨酰甲酰胺。体外γ-谷氨酰甲酰胺的生物合成需要甲铵、ATP、L-谷氨酸以及棕色固氮菌的可溶性细胞提取物。负责γ-谷氨酰甲酰胺合成的酶是谷氨酰胺合成酶。在粗提取物中,L-蛋氨酸-DL-亚砜亚胺在抑制γ-谷氨酰转移酶以及谷氨酰胺和γ-谷氨酰甲酰胺合成活性方面具有同等效力。同样,针对大肠杆菌谷氨酰胺合成酶的抗血清以相似的效价沉淀转移酶和两种合成活性。在细胞在铵培养基上生长导致的阻遏过程中,体外谷氨酰胺和γ-谷氨酰甲酰胺的合成也被协同抑制。从棕色固氮菌中部分纯化的谷氨酰胺合成酶制剂利用甲铵作为底物(Km = 78 mM,Vmax = 0.30 μmol/分钟·毫克),尽管效率低于铵(Km = 0.089 mM,Vmax = 1.1 μmol/分钟·毫克)。以甲铵为底物时谷氨酰胺合成酶的动力学特性以及该活性对Tl +抑制的不敏感性与甲铵转运明显不同。因此,甲铵(铵)转运和作为谷氨酰胺的细胞内捕获是实验上可区分的过程。

相似文献

1
Role of glutamine synthetase in the uptake and metabolism of methylammonium by Azotobacter vinelandii.
J Bacteriol. 1983 Nov;156(2):752-7. doi: 10.1128/jb.156.2.752-757.1983.
2
The role of glutamine in regulation of ammonium transport in Azotobacter vinelandii.
Arch Biochem Biophys. 1984 May 15;231(1):95-101. doi: 10.1016/0003-9861(84)90366-7.
3
glnA mutations conferring resistance to methylammonium in Escherichia coli K12.
J Gen Microbiol. 1987 Jun;133(6):1631-9. doi: 10.1099/00221287-133-6-1631.
4
Transport of ammonium and methylammonium ions by Azotobacter vinelandii.
J Bacteriol. 1981 May;146(2):512-6. doi: 10.1128/jb.146.2.512-516.1981.
6
Ammonium and methylammonium transport in Rhodobacter sphaeroides.
J Bacteriol. 1987 Apr;169(4):1632-8. doi: 10.1128/jb.169.4.1632-1638.1987.
7
Regulation and biochemical characterization of the glutamine synthetase of azotobacter vinelandii.
Biochim Biophys Acta. 1982 Jun 24;704(3):414-21. doi: 10.1016/0167-4838(82)90062-0.
9
In vivo modification of Azotobacter chroococcum glutamine synthetase.
Biochem J. 1994 Mar 15;298 Pt 3(Pt 3):641-5. doi: 10.1042/bj2980641.

引用本文的文献

1
Hepatic glutamine synthetase controls N-methylglutamine in homeostasis and cancer.
Nat Chem Biol. 2023 Mar;19(3):292-300. doi: 10.1038/s41589-022-01154-9. Epub 2022 Oct 24.
5
Evidence that fungal MEP proteins mediate diffusion of the uncharged species NH(3) across the cytoplasmic membrane.
Mol Cell Biol. 2001 Sep;21(17):5733-41. doi: 10.1128/MCB.21.17.5733-5741.2001.
6
Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein.
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7030-4. doi: 10.1073/pnas.95.12.7030.
7
[14C]methylammonium transport by Frankia sp. strain CpI1.
J Bacteriol. 1984 Nov;160(2):636-41. doi: 10.1128/jb.160.2.636-641.1984.
9
Ammonium and methylammonium transport in Rhodobacter sphaeroides.
J Bacteriol. 1987 Apr;169(4):1632-8. doi: 10.1128/jb.169.4.1632-1638.1987.
10
Role of the Escherichia coli glnALG operon in regulation of ammonium transport.
J Bacteriol. 1986 Apr;166(1):281-4. doi: 10.1128/jb.166.1.281-284.1986.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Transport of ammonium and methylammonium ions by Azotobacter vinelandii.
J Bacteriol. 1981 May;146(2):512-6. doi: 10.1128/jb.146.2.512-516.1981.
3
Methylammonium uptake by Rhizobium sp. strain 32H1.
J Bacteriol. 1983 Mar;153(3):1196-201. doi: 10.1128/jb.153.3.1196-1201.1983.
4
Proton-coupled calcium transport by intact cells of Azotobacter vinelandii.
J Bacteriol. 1980 Aug;143(2):1086-9. doi: 10.1128/jb.143.2.1086-1089.1980.
5
The enzymatic synthesis of N-methylglutamic acid.
J Biol Chem. 1966 Feb 25;241(4):935-45.
7
Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli.
Arch Biochem Biophys. 1966 Sep 26;116(1):177-92. doi: 10.1016/0003-9861(66)90026-9.
9
Proton-coupled accumulation of galactoside in Streptococcus lactis 7962.
Proc Natl Acad Sci U S A. 1973 Oct;70(10):2866-9. doi: 10.1073/pnas.70.10.2866.
10
Comparative biochemical and immunological studies of bacterial glutamine synthetases.
J Bacteriol. 1973 Sep;115(3):858-68. doi: 10.1128/jb.115.3.858-868.1973.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验