Suppr超能文献

Role of carboxyl group in Na+-entry step at apical membrane of toad urinary bladder.

作者信息

Park C S, Kipnowski J, Fanestil D D

出版信息

Am J Physiol. 1983 Dec;245(6):F707-15. doi: 10.1152/ajprenal.1983.245.6.F707.

Abstract

Mucosal addition of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) and some lipid-soluble carbodiimides, agents which are selective for carboxyl groups, irreversibly inhibited Na+ transport as measured by short-circuit current (SCC) in the urinary bladder of the toad. The inhibition of Na+ transport by EEDQ had the following characteristics: 1) the inhibition was accompanied by a significant increase in the transepithelial electrical resistance; 2) the decrease in SCC was accounted for by a comparable decrease in 22Na+ influx without effect on Na+ efflux; 3) amphotericin B produced complete recovery of SCC inhibited with EEDQ but not with antimycin A or ouabain; 4) mucosal EEDQ decreased the amiloride-sensitive reversal of Na+ current that is induced by serosal nystatin in the absence of mucosal Na+; 5) vasopressin and acid mucosal pH caused an increase in SCC in proportion to the SCC remaining after EEDQ inhibition; and 6) Vmax of the SCC was decreased without alteration in the apparent Km for Na+. Based on these characteristics of EEDQ inhibition of Na+ transport, we infer that a carboxyl group of the Na+ channel is involved in the Na+-entry step across the apical membrane of "tight" epithelia. The inhibition of Na+ transport with EEDQ most likely involves closing the Na+ channel through a chemical reaction involving a carboxyl group of the channel.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验