Suppr超能文献

Agonist interactions with beta adrenergic receptors in rat brain.

作者信息

O'Donnell J M, Wolfe B B, Frazer A

出版信息

J Pharmacol Exp Ther. 1984 Mar;228(3):640-7.

PMID:6142940
Abstract

Agonist interactions with beta adrenergic receptors on membranes prepared from rat brain were examined by measuring agonist inhibition of [125I]iodopindolol binding in the absence or presence of GTP. When rat cerebral cortical membranes were prepared with 1 mM EDTA in the homogenization medium and 2.5 mM MgCl2 was included in the binding reaction, then 250 microM GTP increased the Hill coefficient for isoproterenol from 0.77 to 0.99 and increased the IC50 from 88 to 213 nM. By contrast, I-propranolol competition curves were steep (Hill coefficient = 0.98) and were not affected by GTP. It was inferred from the results of computer-modeling that, in the absence of GTP, isoproterenol bound to two states of the receptor; GTP converted isoproterenol binding to a single low-affinity state. I-Propranolol bound to a single state in the absence or presence of GTP. The effect of GTP on I-epinephrine inhibition of [125I]iodopindolol binding was essentially identical to its effect on isoproterenol inhibition. GTP and GDP were the most potent of all the nucleotides tested. Guanylylimidodiphosphate (1 mM) produced only partial shifts in the isoproterenol competition curves and GMP and ATP were inactive. In membranes prepared from rat hippocampus and hypothalamus, isoproterenol competition curves and GTP effects were qualitatively similar to those observed in cerebral cortex. However, GTP produced only partial shifts of I-isoproterenol competition curves in cerebellum and neostratium. It appears that agonists, but not antagonists, can stabilize a high-affinity ternary complex with the beta adrenergic receptor and the guanine nucleotide binding regulatory protein in membranes prepared from various regions of the rat brain.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验