Gill D L, Chueh S H, Whitlow C L
J Biol Chem. 1984 Sep 10;259(17):10807-13.
Two major Ca2+ transport mechanisms co-function in a preparation of synaptosomal plasma membrane vesicles: an (ATP + Mg2+)-dependent Ca2+ pump, and a reversible Na+-Ca2+ exchanger (Gill, D. L., Grollman, E.F., and Kohn, L. D. (1981) J. Biol. Chem. 256, 184-192). An accurate comparative analysis of the kinetics of the two Ca2+ transporters under free Ca2+ conditions precisely buffered with EGTA, reveals that both mechanisms have high affinity for Ca2+. The ATP-dependent Ca2+ pump displays simple saturation kinetics with a Km for Ca2+ of 0.11 microM and a Vmax of 2.2 nmol/min/mg of protein. In contrast, the Na+-Ca2+ exchanger has a complex dependence on free Ca2+, the activity continuing to saturate over a wide range of free Ca2+ concentrations from 0.03 microM to 3 mM. The curvilinear Eadie-Hofstee analysis reveals a distinct high affinity component for the exchanger with a Km for Ca2+ of approximately 0.5 microM, and a lower affinity component not accurately resolvable into a discrete Km value. 2 mM amiloride blocks Na+-Ca2+ exchange-mediated Ca2+ uptake by 90% over a wide range of free Ca2+ (0.3-3000 microM), suggesting a similar noncompetitive inhibition of both low and high affinity Ca2+ sites. Ca2+ accumulated in vesicles via either the Ca2+ pump or Na+-Ca2+ exchanger is rapidly (in less than 1 min) released by 0.1% saponin (w/v), although a minor component (8-10%) of Ca2+ pump activity is resistant to saponin addition. The IC50 for the effect of saponin is the same (0.01%, w/v) for both Ca2+ transport mechanisms. The ATP-dependent Ca2+ pump is shown to be highly sensitive to vanadate inhibition (Ki = 0.5 microM). The high saponin sensitivity of both Ca2+ transporters and the potent effect of vanadate on Ca2+ pumping, together with previous Na+ channel and Na+ pump flux studies in the same membrane vesicles (Gill, D. L. (1982) J. Biol. Chem. 257, 10986-10990), all strongly suggest that both of the high affinity Ca2+ transporters function in the plasma membrane where they are of major functional importance to the regulation of intrasynaptic free Ca2+ levels.
在突触体细胞膜囊泡制剂中,两种主要的Ca2+转运机制共同发挥作用:一种是(ATP + Mg2+)依赖性Ca2+泵,另一种是可逆的Na+-Ca2+交换体(吉尔,D.L.,格罗尔曼,E.F.,和科恩,L.D.(1981年)《生物化学杂志》256,184 - 192)。在由乙二醇双四乙酸(EGTA)精确缓冲的游离Ca2+条件下,对这两种Ca2+转运体的动力学进行准确的比较分析,结果表明这两种机制对Ca2+都具有高亲和力。ATP依赖性Ca2+泵表现出简单的饱和动力学,Ca2+的Km为0.11微摩尔,Vmax为2.2纳摩尔/分钟/毫克蛋白质。相比之下,Na+-Ca2+交换体对游离Ca2+具有复杂的依赖性,其活性在0.03微摩尔至3毫摩尔的广泛游离Ca2+浓度范围内持续饱和。曲线Eadie-Hofstee分析显示,该交换体有一个明显的高亲和力成分,Ca2+的Km约为0.5微摩尔,还有一个低亲和力成分,无法准确解析为离散的Km值。2毫摩尔的氨氯地平在广泛的游离Ca2+范围(0.3 - 3000微摩尔)内可使Na+-Ca2+交换介导的Ca2+摄取减少90%,这表明对低亲和力和高亲和力Ca2+位点都有类似的非竞争性抑制作用。通过Ca2+泵或Na+-Ca2+交换体积累在囊泡中的Ca2+可被0.1%(w/v)的皂角苷迅速(在不到1分钟内)释放,不过Ca2+泵活性的一小部分(8 - 10%)对添加皂角苷有抗性。皂角苷作用的IC50对两种Ca2+转运机制是相同的(0.01%,w/v)。ATP依赖性Ca2+泵对钒酸盐抑制高度敏感(Ki = 0.5微摩尔)。两种Ca2+转运体对皂角苷的高敏感性以及钒酸盐对Ca2+泵的强效作用,再加上之前在同一膜囊泡中对Na+通道和Na+泵通量的研究(吉尔,D.L.(1982年)《生物化学杂志》257,10986 - 10990),都强烈表明这两种高亲和力Ca2+转运体在质膜中发挥作用,在那里它们对调节突触内游离Ca2+水平具有重要的功能意义。