Schlegel W, Wuarin F, Wollheim C B, Zahnd G R
Cell Calcium. 1984 Jun;5(3):223-36. doi: 10.1016/0143-4160(84)90038-1.
Changes in the cytosolic free Ca2+ concentration, [Ca2+]i, have been proposed to mediate the regulation of the secretion of pituitary hormones by hypothalamic peptides. Using an intracellularly trapped fluorescent Ca2+ probe, quin2, [Ca2+]i was monitored in GH3 cells. Somatostatin lowers [Ca2+]i in a dose dependent manner from a prestimulatory level of 120 +/- 4 nM (SEM, n = 13) to 78 +/- 9 nM (n = 5) at 10(-7)M; the effect is half maximal at 2 X 10(-9) M somatostatin. The decrease in [Ca2+]i occurs rapidly after somatostatin addition and a lowered steady state [Ca2+]i is maintained for several minutes. Somatostatin does not inhibit the rapid rise in [Ca2+]i elicited by thyrotropin releasing hormone (TRH) and can still cause a decrease in [Ca2+]i in the presence of TRH (10(-7)M). Concomitantly with its action on [Ca2+]i somatostatin causes hyperpolarization of GH3 cells assessed with the fluorescent probe bis-oxonol. The lowering of [Ca2+]i by somatostatin is however not only due to reduced Ca2+ influx through voltage dependent Ca2+ channels, since it persists in the presence of the channel blocker verapamil. These results suggest that somatostatin may exert its inhibitory action on pituitary hormone secretion by decreasing [Ca2+]i.