Hoshino J, Studinger G, Kröger H
Chem Biol Interact. 1980 Nov;32(3):267-79. doi: 10.1016/0009-2797(80)90094-0.
The activity of tyrosine aminotransferase (TAT) (EC 2.6.1.5) was enhanced 3-fold after a 5-h exposure of cultured rat liver cells (RLC) to streptozotocin (SZ) at concentrations higher than 100 microgram/ml (0.38 mM) in the presence of 10 nM dexamethasone, a potent glucocorticoid inducer for the enzyme. The structurally related carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) also enhanced the aminotransferase in the presence of the glucocorticoid, but its optimal concentration was at 100 ng/ml (0.68 microM). While the cellular NAD (NAD+ + NADH) concentration was reduced to 60% of the control levels, the rate of poly(ADP-ribose) formation in the isolated cell nuclei was unaffected by treating the cells with SZ. The enhancement of tyrosine aminotransferase by SZ and MNNG was effectively prevented by nicotinamide. Using nicotinamide and its derivatives such as 1-methyl-, N'-methyl- or 6-amino-derivatives it was found that the degree of enzyme induction is almost inversely proportional to the cellular NAD content, though the activity of nuclear poly(ADP-ribose)polymerase remains unchanged. The results indicate that SZ or MNNG, in combination with dexamethasone, stimulate the induction of tyrosine aminotransferase through their NAD lowering action.