Suppr超能文献

轴浆基质的微小梁结构:交联结构及其分布的可视化

Microtrabecular structure of the axoplasmic matrix: visualization of cross-linking structures and their distribution.

作者信息

Ellisman M H, Porter K R

出版信息

J Cell Biol. 1980 Nov;87(2 Pt 1):464-79. doi: 10.1083/jcb.87.2.464.

Abstract

Axoplasmic transport is a dramatic example of cytoplasmic motility. Constituents of axoplasm migrate as far as 400 mm/d or at approximately 5 micron/s. Thin-section studies have identified the major morphological elements within the axoplasm as being microtubules, neurofilaments (100-A filaments), an interconnected and elongated varicose component of smooth endoplasmic reticulum (SER), more dilated and vesicular organelles resembling portions of SER, multivesicular bodies, mitochondria, and, finally, a matrix of ground substance in which the tubules, filaments, and vesicles are suspended. In the ordinary thin-section image, the ground substance is comprised of wispy fragments which, in not being noticeably tied together, do not give the impression of representing more than a condensation of what might be a homogeneous solution of proteins. With the high-voltage microscope on thick (0.5-micron) sections, we have noticed, however, that the so-called wispy fragments are part of a three-dimensional lattice. We contend that this lattice is not an artifact of aldehyde fixation, and our contention is supported by its visability after rapid-freezing and freeze-substitution. This lattice or microtrabecular matrix of axoplasm was found to consist of an organized system of cross-bridges between microtubules, neurofilaments, cisternae of the SER, and the plasma membrane. We propose that formation and deformation of this system are involved in rapid axonal transport. To facilitate electron microscope visualization of the trabecular connections between elements of axoplasm, the following three techniques were used: first, the addition of tannic acid to the primary fixative, OsO4 postfixation, then en bloc staining in uranyl acetate for conventional transmission electron microscope (TEM); second, embedding tissue in polyethylene glycol for thin sectioning, dissolving out the embedding medium from the sections and blocks, critical-point-drying (J. J. Wolosewick, 1980, J. Cell Biol., 86:675-681.), and then observing the matrix-free sections with TEM or the blocks with a scanning electron microscope; and third, rapid freezing of fixed tissue followed by freeze-etching and rotary-shadowing with replicas observed by TEM. All of these procedures yielded images of cross-linking elements between neurofilaments and organelles of the axoplasm. These improvements in visualization should enable us to examine the distribution of trabecular links on motile axonal organelles.

摘要

轴浆运输是细胞质运动的一个显著例子。轴浆成分的迁移速度可达400毫米/天或约5微米/秒。超薄切片研究已确定轴浆内的主要形态学成分是微管、神经丝(100埃细丝)、光滑内质网(SER)相互连接且细长的曲张成分、更膨大且类似SER部分的囊泡状细胞器、多泡体、线粒体,最后还有一种基质,微管、细丝和囊泡悬浮其中。在普通的超薄切片图像中,基质由纤细的碎片组成,这些碎片没有明显地连接在一起,给人的印象只是一种可能是蛋白质均匀溶液的浓缩物。然而,用高压显微镜观察厚(0.5微米)切片时,我们注意到所谓的纤细碎片是三维晶格的一部分。我们认为这种晶格不是醛固定的假象,快速冷冻和冷冻置换后的可见性支持了我们的观点。发现轴浆的这种晶格或微梁网络由微管、神经丝、SER的池和质膜之间的交联桥有组织系统组成。我们提出这个系统的形成和变形与轴突快速运输有关。为便于用电子显微镜观察轴浆成分之间的微梁连接,采用了以下三种技术:第一,在初次固定剂中加入鞣酸,OsO4后固定,然后在醋酸铀中进行整体染色,用于常规透射电子显微镜(TEM);第二,将组织包埋在聚乙二醇中进行超薄切片,从切片和包块中溶解掉包埋介质,临界点干燥(J. J. 沃洛塞维克,1980年,《细胞生物学杂志》,86:675 - 681),然后用TEM观察无基质切片或用扫描电子显微镜观察包块;第三,将固定组织快速冷冻,然后进行冷冻蚀刻和旋转阴影,用TEM观察复制品。所有这些程序都产生了神经丝与轴浆细胞器之间交联元件的图像。这些可视化方面的改进应能使我们研究运动性轴突细胞器上微梁连接的分布情况。

相似文献

2
Cytoplasmic structure in rapid-frozen axons.快速冷冻轴突中的细胞质结构。
J Cell Biol. 1982 Sep;94(3):667-9. doi: 10.1083/jcb.94.3.667.

引用本文的文献

1
Neurofilament Biophysics: From Structure to Biomechanics.神经丝生物物理学:从结构到生物力学。
Mol Biol Cell. 2024 May 1;35(5):re1. doi: 10.1091/mbc.E23-11-0438. Epub 2024 Apr 10.
6
Optically resolving individual microtubules in live axons.在活轴突中解析单个微管。
Structure. 2009 Nov 11;17(11):1433-41. doi: 10.1016/j.str.2009.09.008.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验