Suppr超能文献

Bifunctional intercalation of antitumor antibiotics BBM-928A and echinomycin with deoxyribonucleic acid. Effects of intercalation on deoxyribonucleic acid degradative activity of bleomycin and phleomycin.

作者信息

Huang C H, Prestayko A W, Crooke S T

出版信息

Biochemistry. 1982 Jul 20;21(15):3704-10. doi: 10.1021/bi00258a028.

Abstract

The binding of peptide antitumor antibiotics, BBM-928A and echinomycin, to superhelical PM2 DNA and the effects of the resulting conformational changes of DNA on the DNA-degradative activity of two related antitumor antibiotics, bleomycin A2 and phleomycin D1, have been studied. The bifunctional intercalative mode of the DNA binding of BBM-928A concluded previously from viscometric and fluorometric studies has been confirmed by gel electrophoretic analysis. Under the employed electrophoretic conditions, DNA-bound BBM-928A showed little dissociation whereas echinomycin and ethidium bromide showed partial and nearly complete dissociation, respectively. BBM-928A induced neither single-strand nor double-strand breaks in DNA. Competitive binding studies by fluorescence changes suggested that binding sites on DNA molecules for BBM-928A (or echinomycin) may differ from those for ethidium bromide, since binding to DNA by the two drugs was not competitive even at saturating concentrations. The lack of such a competition between the two drugs is not consistent with the neighbor-exclusion principle. The DNA-degradative activity of both bleomycin A2 and phleomycin D1 increased with the removal of the negative superhelicity of DNA by the BBM-928A intercalation and decreased with the formation of positive superhelical turns induced by high concentrations of BBM-928A. Thus the degradative activity of both bleomycin A2 and phleomycin D1 is sensitive in a similar manner to the degree of superhelicity rather than the double helicity of DNA, although there are differences between these two drugs in interaction with DNA.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验