Suppr超能文献

[细菌视紫红质作为电流分子生物学发生器的时间特性]

[Temporal characteristics of bacteriorhodopsin as a molecular biological generator of current].

作者信息

Drachev L A, Kaulen A D, Skulachev V P

出版信息

Mol Biol (Mosk). 1977 Nov-Dec;11(6):1377-87.

PMID:618349
Abstract

Generation of electric potential difference by bacteriorhodopsin proteoliposomes incorporated into the phospholipid-impregnated collodion film has been studied. It is shown that illumination of this film by continuous light gives rise to the generation of an electric potential difference across the film (plus on the bacteriorhodopsin-free side), which can be as high as 300 mV. Short unsaturating flash inducing single turn-over of bacteriorhodopsin generates the potential difference which is a function of the flash intensity (70 mV at 3 mjoule light). The flash-induced photoelectric response consists of four phases. (1) Very fast (tau less than 1 microsec) generation of a potential difference (minus in the bacteriorhodopsin-free compartment). The amplitude of this phase is rather small (1--5 mV). (2) Fast phase of positive charging of the bacteriorhodopsin-free compartment (tau = 25--50 microsec). (3) Slow phase of positive charging of this compartment (tau = 6--12 msec) Amplitude of the second phase is to that of the third as 1 : 2. (4) A very slow phase of discharge of the flash-induced potential difference (tau = 1 sec at 10(8) ohm X cm2 film resistance). The third phase was specifically inhibited by La3+. Both the second and the third phases are decelerated by substitution of D2O in 4.5--5 and 2 times, respectively, while the amplitude of the first phase increases. Prolonged storage of the system in the dark (tua = 20--25 min) causes the decrease in the amplitudes of the second and the third phases as if the amount of active bacteriorhodopsin molecules were increased by factor 2. Such an inhibition was reversed by 30--60 sec illumination of the system. The dark adaptation is accompanied by some increase in the first phase amplitude. Comparison of these data with results of other studies on bacteriorhodopsin suggests that (1) the first phase is due to the photoinduced change in the retinal dipole; (2) the second phase corresponds to H+ transfer from Schiff base to the water solution in the proteoliposome interior; 3) the third phase represents H+ transfer from the incubation mixture to Schiff base; (4) the dark adaptation is a result of transition of photoelectrochemically active all-trans-retinal to the inactive 13-cis-retinal.

摘要

对掺入磷脂浸渍火棉胶膜中的细菌视紫红质蛋白脂质体产生电势差的情况进行了研究。结果表明,用连续光照射该膜会导致膜上产生电势差(不含细菌视紫红质的一侧为正),其值可高达300毫伏。诱导细菌视紫红质单周转的短时间不饱和闪光会产生电势差,该电势差是闪光强度的函数(3毫焦耳光时为70毫伏)。闪光诱导的光电响应包括四个阶段。(1)非常快速(时间常数小于1微秒)地产生电势差(不含细菌视紫红质的隔室为负)。该阶段的幅度相当小(1 - 5毫伏)。(2)不含细菌视紫红质的隔室正电荷快速增加阶段(时间常数 = 25 - 50微秒)。(3)该隔室正电荷缓慢增加阶段(时间常数 = 6 - 12毫秒)。第二阶段的幅度与第三阶段的幅度之比为1 : 2。(4)闪光诱导电势差的非常缓慢的放电阶段(膜电阻为10^8欧姆×厘米^2时时间常数 = 1秒)。第三阶段被La3+特异性抑制。第二和第三阶段分别在4.5 - 5倍和2倍的D2O替代时减速,而第一阶段的幅度增加。系统在黑暗中长时间储存(时间常数 = 20 - 25分钟)会导致第二和第三阶段的幅度减小,就好像活性细菌视紫红质分子的数量增加了2倍。通过对系统进行30 - 60秒的光照可逆转这种抑制。暗适应伴随着第一阶段幅度的一些增加。将这些数据与其他关于细菌视紫红质的研究结果进行比较表明:(1)第一阶段是由于视黄醛偶极子的光诱导变化;(2)第二阶段对应于H+从席夫碱转移到蛋白脂质体内部的水溶液中;(3)第三阶段代表H+从孵育混合物转移到席夫碱;(4)暗适应是光电化学活性的全反式视黄醛转变为无活性的13 - 顺式视黄醛的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验