Makovitzky J
Prog Histochem Cytochem. 1984;15(3):1-100. doi: 10.1016/s0079-6336(84)80005-4.
The present study deals with investigations of membrane structure using polarization topo-optical reactions. Polarization microscopy is a special field of biological submicroscopic morphology. It represents a powerful tool well able to reveal the features of organization of biological structures, and the regularity of macromolecules building cells and tissues - properties that cannot directly be studied by other approaches to complex biological systems. Only in "pure" systems can X-ray diffraction, or the analysis of circular dichroism and the dispersion of optical rotability provide data equivalent to those obtained by polarization microscopy in complex systems. One of the main drawbacks of molecular biology is that most information is relevant to isolated, purified particles or macromolecules. Thus, no conclusions can be drawn concerning the original arrangement of molecules. The gap between biochemical-biophysical and morphological approaches to molecular arrangement in complex structures is bridged by the polarization optical technique. As was pointed out in the introduction, polarization microscopy became a routine biological research method following the pioneering work of Romhányi. His enlightening topo-optical reactions (Romhányi 1960, 1963, 1966) were based on the oriented dye binding of the original charge carriers of regularly arranged tissue constituents. The second group of Romhányi's topo-optical reactions comprised procedures such as sulfation (Romhányi et al. 1973, 1974), the aldehyde-bisulfite-toluidine blue (ABT) reaction (Romhányi et al. 1974, 1975), the permanganate-bisulfite-toluidine blue (PBT) reaction (Fischer 1979, 1979a), and the sialic acid-specific reaction (Makovitzky 1980) all of which operate with induced dye-binding groups; i.e. dye-binding moieties on biological macromolecules are produced by specific chemical reactions.
本研究涉及利用偏振拓扑光学反应对膜结构进行研究。偏振显微镜是生物亚微观形态学的一个特殊领域。它是一种强大的工具,能够很好地揭示生物结构的组织特征以及构建细胞和组织的大分子的规律性——这些特性是其他研究复杂生物系统的方法无法直接研究的。只有在“纯”系统中,X射线衍射、圆二色性分析和旋光色散才能提供与偏振显微镜在复杂系统中获得的数据相当的数据。分子生物学的一个主要缺点是,大多数信息与分离、纯化的颗粒或大分子有关。因此,无法得出关于分子原始排列的结论。偏振光学技术弥合了生物化学 - 生物物理方法与复杂结构中分子排列的形态学方法之间的差距。正如引言中所指出的,继罗曼伊的开创性工作之后,偏振显微镜成为一种常规的生物学研究方法。他具有启发性的拓扑光学反应(罗曼伊,1960年、1963年、1966年)基于规则排列的组织成分的原始电荷载体的定向染料结合。罗曼伊的第二组拓扑光学反应包括硫酸化(罗曼伊等人,1973年、1974年)、醛 - 亚硫酸氢盐 - 甲苯胺蓝(ABT)反应(罗曼伊等人,1974年、1975年)、高锰酸盐 - 亚硫酸氢盐 - 甲苯胺蓝(PBT)反应(菲舍尔,1979年、1979a)以及唾液酸特异性反应(马科维茨基,1980年),所有这些反应都利用诱导染料结合基团;即生物大分子上的染料结合部分是通过特定化学反应产生的。