Suppr超能文献

对大肠杆菌糖异生生长过程中涉及6-磷酸果糖再转化为1,6-二磷酸果糖的无效循环的评估。

Assessment of a futile cycle involving reconversion of fructose 6-phosphate to fructose 1,6-bisphosphate during gluconeogenic growth of Escherichia coli.

作者信息

Daldal F, Fraenkel D G

出版信息

J Bacteriol. 1983 Jan;153(1):390-4. doi: 10.1128/jb.153.1.390-394.1983.

Abstract

In gluconeogenesis, fructose 6-phosphate is formed from fructose 1,6-bisphosphate, and if fructose 1,6-bisphosphate were reformed by the phosphofructokinase reaction there would be a "gluconeogenic futile cycle." We assessed the extent of this cycling in Escherichia coli growing on glycerol 3-phosphate, using a medium containing 32Pi. Fructose 1,6-bisphosphate coming from glycerol 3-phosphate should be unlabeled, but any coming from fructose 6-phosphate should contain label from the gamma-position of ATP. The amount of labeling of the 1-position of fructose 1,6-bisphosphate was only 2 to 10% of that of the gamma-position of ATP in a series of isogenic strains differing in phosphofructokinases (Pfk-1, Pfk-2, or Pfk-2). In control experiments with glucose 6-phosphate instead of glycerol 3-phosphate, the two positions were equally labeled. Thus, although the presence of Pfk-2 causes gluconeogenic impairment (Daldal et al., Eur. J. Biochem., 126:373-379, 1982), gluconeogenic futile cycling cannot be the reason.

摘要

在糖异生过程中,果糖1,6 - 二磷酸会生成果糖6 - 磷酸,而如果果糖1,6 - 二磷酸通过磷酸果糖激酶反应重新生成,就会出现“糖异生无效循环”。我们使用含有³²Pi的培养基,评估了在以3 - 磷酸甘油为碳源生长的大肠杆菌中这种循环的程度。来自3 - 磷酸甘油的果糖1,6 - 二磷酸应该是未标记的,但任何来自果糖6 - 磷酸的果糖1,6 - 二磷酸应该含有来自ATPγ位的标记。在一系列磷酸果糖激酶(Pfk - 1、Pfk - 2或Pfk - 2)不同的同基因菌株中,果糖1,6 - 二磷酸1位的标记量仅为ATPγ位标记量的2%至10%。在以6 - 磷酸葡萄糖代替3 - 磷酸甘油的对照实验中,这两个位置的标记程度相同。因此,尽管Pfk - 2的存在会导致糖异生受损(达尔达尔等人,《欧洲生物化学杂志》,126:373 - 379,1982),但糖异生无效循环并非其原因。

相似文献

3
The fructose 6-phosphate/fructose 1, 6 bisphosphate cycle.
Curr Top Cell Regul. 1981;18:199-210. doi: 10.1016/b978-0-12-152818-8.50017-7.
5
6
A mutant phosphofructokinase produces a futile cycle during gluconeogenesis in Escherichia coli.
Biochem J. 1997 Nov 1;327 ( Pt 3)(Pt 3):675-84. doi: 10.1042/bj3270675.

引用本文的文献

1
Controlled burn: interconnections between energy-spilling pathways and metabolic signaling in bacteria.
J Bacteriol. 2025 May 22;207(5):e0054224. doi: 10.1128/jb.00542-24. Epub 2025 Mar 31.
2
3
Escherichia coli metabolism under short-term repetitive substrate dynamics: adaptation and trade-offs.
Microb Cell Fact. 2020 May 29;19(1):116. doi: 10.1186/s12934-020-01379-0.
5
Synthetic non-oxidative glycolysis enables complete carbon conservation.
Nature. 2013 Oct 31;502(7473):693-7. doi: 10.1038/nature12575. Epub 2013 Sep 29.
7
Metabolic flux responses to pyruvate kinase knockout in Escherichia coli.
J Bacteriol. 2002 Jan;184(1):152-64. doi: 10.1128/JB.184.1.152-164.2002.
8
Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture.
J Bacteriol. 2001 Dec;183(24):7308-17. doi: 10.1128/JB.183.24.7308-7317.2001.
9
On the topological features of optimal metabolic pathway regimes.
Appl Biochem Biotechnol. 1996 Sep;60(3):251-301. doi: 10.1007/BF02783588.
10
Energetics of bacterial growth: balance of anabolic and catabolic reactions.
Microbiol Rev. 1995 Mar;59(1):48-62. doi: 10.1128/mr.59.1.48-62.1995.

本文引用的文献

1
Hfr formation directed by tn10.
Genetics. 1979 Apr;91(4):639-55. doi: 10.1093/genetics/91.4.639.
2
THE UTILIZATION OF GLUCOSE 6-PHOSPHATE BY GLUCOKINASELESS AND WILD-TYPE STRAINS OF ESCHERICHIA COLI.
Proc Natl Acad Sci U S A. 1964 Nov;52(5):1207-13. doi: 10.1073/pnas.52.5.1207.
6
[Reversible specific concentration of amino acids in Escherichia coli].
Ann Inst Pasteur (Paris). 1956 Nov;91(5):693-720.
7
Linkage map of Escherichia coli K-12, edition 6.
Microbiol Rev. 1980 Mar;44(1):1-56. doi: 10.1128/mr.44.1.1-56.1980.
8
Tn10 insertions in the pfkB region of Escherichia coli.
J Bacteriol. 1981 Sep;147(3):935-43. doi: 10.1128/jb.147.3.935-943.1981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验