Suppr超能文献

小分子调控网络的全基因组结构与调控和酶活性之间的基本权衡。

Genome-Scale Architecture of Small Molecule Regulatory Networks and the Fundamental Trade-Off between Regulation and Enzymatic Activity.

机构信息

Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; Systems Biology Graduate School, Zurich 8057, Switzerland.

出版信息

Cell Rep. 2017 Sep 12;20(11):2666-2677. doi: 10.1016/j.celrep.2017.08.066.

Abstract

Metabolic flux is in part regulated by endogenous small molecules that modulate the catalytic activity of an enzyme, e.g., allosteric inhibition. In contrast to transcriptional regulation of enzymes, technical limitations have hindered the production of a genome-scale atlas of small molecule-enzyme regulatory interactions. Here, we develop a framework leveraging the vast, but fragmented, biochemical literature to reconstruct and analyze the small molecule regulatory network (SMRN) of the model organism Escherichia coli, including the primary metabolite regulators and enzyme targets. Using metabolic control analysis, we prove a fundamental trade-off between regulation and enzymatic activity, and we combine it with metabolomic measurements and the SMRN to make inferences on the sensitivity of enzymes to their regulators. Generalizing the analysis to other organisms, we identify highly conserved regulatory interactions across evolutionarily divergent species, further emphasizing a critical role for small molecule interactions in the maintenance of metabolic homeostasis.

摘要

代谢通量部分受到内源性小分子的调节,这些小分子可以调节酶的催化活性,例如别构抑制。与酶的转录调控相比,技术限制阻碍了全基因组范围内小分子-酶调控相互作用图谱的生成。在这里,我们开发了一种利用广泛但碎片化的生化文献来重建和分析模型生物大肠杆菌小分子调控网络(SMRN)的框架,包括主要代谢物调节剂和酶靶标。使用代谢控制分析,我们证明了调节和酶活性之间的基本权衡,并且我们将其与代谢组学测量和 SMRN 相结合,对酶对其调节剂的敏感性进行推断。将分析推广到其他生物体,我们在进化上差异很大的物种中发现了高度保守的调控相互作用,进一步强调了小分子相互作用在维持代谢稳态中的关键作用。

相似文献

2
Systematic identification of metabolites controlling gene expression in E. coli.
Nat Commun. 2019 Oct 2;10(1):4463. doi: 10.1038/s41467-019-12474-1.
3
In silico model-guided identification of transcriptional regulator targets for efficient strain design.
Microb Cell Fact. 2018 Oct 25;17(1):167. doi: 10.1186/s12934-018-1015-7.
4
Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks.
FEMS Microbiol Rev. 2010 Sep;34(5):628-45. doi: 10.1111/j.1574-6976.2010.00227.x. Epub 2010 Apr 14.
5
Multi-objective shadow prices point at principles of metabolic regulation.
Biosystems. 2016 Aug;146:91-101. doi: 10.1016/j.biosystems.2016.04.005. Epub 2016 Jun 14.
6
Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli.
J Theor Biol. 2012 Feb 21;295:100-15. doi: 10.1016/j.jtbi.2011.11.010. Epub 2011 Nov 28.
8
Functional states of the genome-scale Escherichia coli transcriptional regulatory system.
PLoS Comput Biol. 2009 Jun;5(6):e1000403. doi: 10.1371/journal.pcbi.1000403. Epub 2009 Jun 5.
10
Creating small transcription activating RNAs.
Nat Chem Biol. 2015 Mar;11(3):214-20. doi: 10.1038/nchembio.1737. Epub 2015 Feb 2.

引用本文的文献

1
An approach to learn regulation to maximize growth and entropy production rates in metabolism.
Front Syst Biol. 2023 Apr 5;3:981866. doi: 10.3389/fsysb.2023.981866. eCollection 2023.
2
Redox poise in R. rubrum phototrophic growth drives large-scale changes in macromolecular pathways.
PLoS Comput Biol. 2025 Jun 10;21(6):e1013015. doi: 10.1371/journal.pcbi.1013015. eCollection 2025 Jun.
4
Systematic identification of allosteric effectors in metabolism.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2423767122. doi: 10.1073/pnas.2423767122. Epub 2025 Mar 6.
5
Time and dose selective glucose metabolism for glucose homeostasis and energy conversion in the liver.
NPJ Syst Biol Appl. 2024 Sep 30;10(1):107. doi: 10.1038/s41540-024-00437-2.
6
Quantitative principles of microbial metabolism shared across scales.
Nat Microbiol. 2024 Aug;9(8):1940-1953. doi: 10.1038/s41564-024-01764-0. Epub 2024 Aug 6.
7
Local flux coordination and global gene expression regulation in metabolic modeling.
Nat Commun. 2023 Sep 14;14(1):5700. doi: 10.1038/s41467-023-41392-6.
8
Insight into de-regulation of amino acid feedback inhibition: a focus on structure analysis method.
Microb Cell Fact. 2023 Aug 23;22(1):161. doi: 10.1186/s12934-023-02178-z.
9
Principles of metabolome conservation in animals.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2302147120. doi: 10.1073/pnas.2302147120. Epub 2023 Aug 21.
10
Prediction of metabolite-protein interactions based on integration of machine learning and constraint-based modeling.
Bioinform Adv. 2023 Jul 17;3(1):vbad098. doi: 10.1093/bioadv/vbad098. eCollection 2023.

本文引用的文献

2
Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli.
PLoS Comput Biol. 2017 Feb 10;13(2):e1005396. doi: 10.1371/journal.pcbi.1005396. eCollection 2017 Feb.
3
Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli.
Mol Syst Biol. 2017 Jan 3;13(1):903. doi: 10.15252/msb.20167402.
5
Systems-level analysis of mechanisms regulating yeast metabolic flux.
Science. 2016 Oct 28;354(6311). doi: 10.1126/science.aaf2786. Epub 2016 Oct 27.
6
Computational approaches to investigating allostery.
Curr Opin Struct Biol. 2016 Dec;41:159-171. doi: 10.1016/j.sbi.2016.06.017. Epub 2016 Sep 6.
7
Metabolite concentrations, fluxes and free energies imply efficient enzyme usage.
Nat Chem Biol. 2016 Jul;12(7):482-9. doi: 10.1038/nchembio.2077. Epub 2016 May 2.
8
Pseudo-transition Analysis Identifies the Key Regulators of Dynamic Metabolic Adaptations from Steady-State Data.
Cell Syst. 2015 Oct 28;1(4):270-82. doi: 10.1016/j.cels.2015.09.008. Epub 2015 Oct 22.
9
Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.
J R Soc Interface. 2016 Apr;13(117). doi: 10.1098/rsif.2015.1046. Epub 2016 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验