Westerhoff H V, Helgerson S L, Theg S M, van Kooten O, Wikström M, Skulachev V P, Dancsházy Z
Acta Biochim Biophys Acad Sci Hung. 1983;18(3-4):129-49.
Although the general principles of the chemiosmotic coupling theory have become widely accepted, the (degree of) loc(aliz)ation of electrochemical proton potential difference cannot yet be deduced from the existing experimental data. Many results are not in ready accordance with the idea that one protonic electrochemical potential difference, i.e. the one between a homogeneous inner and a homogeneous outer aqueous phase, would be the high-free-energy intermediate of membrane-linked free-energy transduction. Rather, free-energy transduction in an organelle like a mitochondrion or a chloroplast might take place in large number (about 1 per H+-ATPase) of miniature chemiosmotic systems. The energized protons produced in such a miniature system might be largely (but not totally) confined to a proton-domain belonging to it. Hence, there might be many (rather than one) different relevant proton gradients.
尽管化学渗透偶联理论的一般原理已被广泛接受,但目前仍无法从现有实验数据中推断出电化学质子电位差的(程度)定位情况。许多结果与这样一种观点并不完全一致,即一个质子电化学电位差,也就是均匀的内部水相和均匀的外部水相之间的电位差,会是膜联自由能转导的高自由能中间体。相反,在诸如线粒体或叶绿体这样的细胞器中的自由能转导可能发生在大量(大约每一个H⁺ - ATP酶对应一个)微型化学渗透系统中。在这样一个微型系统中产生的被激发的质子可能在很大程度上(但并非完全)局限于属于它的一个质子域。因此,可能存在许多(而非一个)不同的相关质子梯度。