Avula X J, Oestreicher H L
Aviat Space Environ Med. 1978 Jan;49(1 Pt. 2):279-86.
The pooling of blood in the lower part of the human body when it is subjected to longitudinal +Gz acceleration is one of the major reasons for cardiac insufficiency and the consequent impairment of certain important physiological functions. Headache, abdominal pain, change in heart rate, chest pain, impairment of vision, and hemorrhage are some of the manifestations of acceleration trauma. To predict the effects of time-dependent accelerations on the circulation, a mathematical model independent of assumptions extrapolated from normal G conditions must be considered. The model in the present study consists of a closed-loop hydrodynamic system comprising a heart pump, elastic tubes to represent the large arteries and veins, and a baroreceptor feedback mechanism to help to overcome cardiac insufficiency. The governing equations consist of the Navier-Stokes equations for fluid motion in the blood vessels, and equations of motion for time-dependent blood vessel deformation and ventricular contraction derived from nonlinear elasticity theory. In a numerical example, an experimentally measured deceleration profile is used and the calculated aortic flow is compared with the experimental values.
人体在承受纵向+Gz加速度时,血液在身体下部的淤积是导致心脏功能不全以及某些重要生理功能随之受损的主要原因之一。头痛、腹痛、心率变化、胸痛、视力受损和出血是加速度创伤的一些表现。为了预测随时间变化的加速度对循环系统的影响,必须考虑一个独立于从正常重力条件外推假设的数学模型。本研究中的模型由一个闭环流体动力系统组成,该系统包括一个心脏泵、代表大动脉和静脉的弹性管以及一个压力感受器反馈机制,以帮助克服心脏功能不全。控制方程包括血管中流体运动的纳维-斯托克斯方程,以及由非线性弹性理论导出的随时间变化的血管变形和心室收缩的运动方程。在一个数值示例中,使用了实验测量的减速曲线,并将计算得到的主动脉血流与实验值进行了比较。