Suppr超能文献

人体前臂的个性化电动运动神经肌肉模型。

Personalized, electro-kinematic, neuromuscular model of a human forearm.

作者信息

Boykin W H, Chaffin D B, Doddington H W, Meacham R C

出版信息

Aviat Space Environ Med. 1978 Jan;49(1 Pt. 2):299-303.

PMID:623597
Abstract

Electromyography, the recording of muscular activity, is of importance in industrial, biomechanical, and sports research as well as in medical diagnoses. When a muscle is activated, an electric potential in the order of microvolts (muV) is generated. This potential can be picked up, amplified, and displayed on an oscilloscope or strip chart recorder. Researchers have developed ways of analyzing these signals in terms of their characteristics. A numerical index, which reflects the basic characteristics of the electromyogram, mainly amplitude, frequency, and duration, can be used to provide quantitative information. The method used in this work for EMG processing consisted of filtering, rectification, and integration over very small intervals of time. Both analog and digital filtering proved necessary. Angular accelerometer and rotational potentiometer data were used in conjunction with limb inertia parameters obtained from existing biochemical models for the individual tested for obtaining the torques as a function of time. A system parameter identification method was used to determine the muscle parameters, such as occur in the single muscle Hill model, of four muscle groups for a human arm. The main results consist of personalized arm muscle group models. It was concluded that the method provided excellent (fit) personalized arm muscle group models under dynamic conditions. This method could lead to fundamental scientific information about a living muscle group from experiments in vivo.

摘要

肌电图,即肌肉活动的记录,在工业、生物力学、体育研究以及医学诊断中都具有重要意义。当肌肉被激活时,会产生微伏(μV)量级的电势。这个电势可以被采集、放大,并显示在示波器或带状图表记录仪上。研究人员已经开发出根据这些信号的特征进行分析的方法。一个反映肌电图基本特征(主要是幅度、频率和持续时间)的数值指标可用于提供定量信息。这项工作中用于肌电图处理的方法包括滤波、整流以及在非常小的时间间隔上进行积分。模拟滤波和数字滤波都被证明是必要的。角加速度计和旋转电位计数据与从针对个体测试的现有生化模型中获得的肢体惯性参数结合使用,以获取作为时间函数的扭矩。使用系统参数识别方法来确定人体手臂四个肌肉群的肌肉参数,例如单肌肉希尔模型中出现的参数。主要结果是个性化的手臂肌肉群模型。得出的结论是,该方法在动态条件下提供了出色的(拟合)个性化手臂肌肉群模型。这种方法可以从体内实验中得出关于活体肌肉群的基础科学信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验