Perez L M, Mekras J A, Briggle T V, Greer S
Int J Radiat Oncol Biol Phys. 1984 Aug;10(8):1453-8. doi: 10.1016/0360-3016(84)90367-5.
Our approach to overcome the problem of rapid catabolism and general toxicity encountered with 5-halogenated analogues of deoxyuridine (5-bromo, chloro or iododeoxyuridine), which has limited their use as tumor radiosensitizers, is to utilize 5-chlorodeoxycytidine (CldC) with tetrahydrouridine (H4U). We propose that CldC, coadministered with H4U, is metabolized in the following manner: CldC----CldCMP----CldUMP---- ----CldUTP----DNA. All the enzymes of this pathway are elevated in many human malignant tumors and in HEp-2 cells. In X irradiation studies with HEp-2 cells, limited to 1 or 2 radiation doses, we have obtained 3.0 to 3.8 apparent dose enhancement ratios (these represent upper limits) when cells are preincubated with inhibitors of pyrimidine biosynthesis: N-(Phosphonacetyl)-L-aspartate (PALA) and 5-fluorodeoxyuridine (FdU) or 5-fluorodeoxycytidine (FdC) + H4U. Optimum conditions for radiosensitization are: PALA (0.1 mg/ml) 18-20 hr prior to FdU (0.1 microM) or FdC (0.02 microM) + H4U (0.1 mM) followed 6 hr later by CldC (0.1-0.2 mM) + H4U (0.1 mM) for 56-68 hr. Viabilities of 10 +/- 4% to 15 +/- 1% (+/- S.E.) were obtained for drug-treated unirradiated cells. Enzymatic studies indicate that this toxicity may be tumor selective. CldC + H4U alone (at these concentrations) results in 20% substitution of CldU for thymidine in DNA (determined by HPLC analysis). Preliminary toxicity studies indicate that mice will tolerate treatment protocols involving a single dose of PALA (200 mg/kg) followed by a dose of FdU (50 mg/kg) and 3 cycles of CldC (500 mg/kg) + H4U (100 mg/kg) at 10 hour intervals, with marginal weight loss (4%). In this approach we seek to obtain preferential conversion of CldC to CldUTP at the tumor site by taking advantage of quantitative differences in enzyme levels between tumors and normal tissues.
我们解决脱氧尿苷的5-卤代类似物(5-溴、氯或碘脱氧尿苷)所遇到的快速分解代谢和一般毒性问题的方法,是将5-氯脱氧胞苷(CldC)与四氢尿苷(H4U)一起使用。这些5-卤代类似物作为肿瘤放射增敏剂的应用受到限制。我们提出,与H4U共同给药的CldC按以下方式代谢:CldC→CldCMP→CldUMP→CldUTP→DNA。该途径的所有酶在许多人类恶性肿瘤和HEp-2细胞中均有升高。在用HEp-2细胞进行的X射线照射研究中(限于1或2个辐射剂量),当细胞用嘧啶生物合成抑制剂:N-(膦酰乙酰基)-L-天冬氨酸(PALA)和5-氟脱氧尿苷(FdU)或5-氟脱氧胞苷(FdC)+H4U预孵育时,我们获得了3.0至3.8的表观剂量增强率(这些代表上限)。放射增敏的最佳条件是:在FdU(0.1 microM)或FdC(0.02 microM)+H4U(0.1 mM)之前18 - 20小时给予PALA(0.1 mg/ml),6小时后给予CldC(0.1 - 0.2 mM)+H4U(0.1 mM),持续56 - 68小时。对于经药物处理但未照射的细胞,存活率为10±4%至15±1%(±标准误)。酶学研究表明这种毒性可能具有肿瘤选择性。单独的CldC + H4U(在这些浓度下)导致DNA中CldU对胸苷的取代率为20%(通过HPLC分析测定)。初步毒性研究表明,小鼠能够耐受涉及单剂量PALA(200 mg/kg),随后是剂量为FdU(50 mg/kg)以及3个周期的CldC(500 mg/kg)+H4U(100 mg/kg),间隔10小时的治疗方案,体重仅有轻微减轻(4%)。在这种方法中,我们试图通过利用肿瘤组织和正常组织之间酶水平的定量差异,在肿瘤部位实现CldC向CldUTP的优先转化。