Suppr超能文献

甲烷生成的生物能量学

The bioenergetics of methanogenesis.

作者信息

Daniels L, Sparling R, Sprott G D

出版信息

Biochim Biophys Acta. 1984 Sep 6;768(2):113-63. doi: 10.1016/0304-4173(84)90002-8.

Abstract

The reduction of CO2 or any other methanogenic substrate to methane serves the same function as the reduction of oxygen, nitrate or sulfate to more reduced products. These exergonic reactions are coupled to the production of usable energy generated through a charge separation and a protonmotive-force-driven ATPase. For the understanding of how methanogens derive energy from C-1 unit reduction one must study the biochemistry of the chemical reactions involved and how these are coupled to the production of a charge separation and subsequent electron transport phosphorylation. Data on methanogenesis by a variety of organisms indicates ubiquitous use of CH3-S-CoM as the final electron acceptor in the production of methane through the methyl CoM reductase and of 5-deazaflavin as a primary source of reducing equivalents. Three known enzymes serve as catalysts in the production of reduced 5-deazaflavin: hydrogenase, formate dehydrogenase and CO dehydrogenase. All three are potential candidates for proton pumps. In the organisms that must oxidize some of their substrate to obtain electrons for the reduction of another portion of the substrate to methane (e.g., those using formate, methanol or acetate), the latter two enzymes may operate in the oxidizing direction. CO2 is the most frequent substrate for methanogenesis but is the only substrate that obligately requires the presence of H2 and hydrogenase. Growth on methanol requires a B12-containing methanol-CoM methyl transferase and does not necessarily need any other methanogenic enzymes besides the methyl-CoM reductase system when hydrogenase is present. When bacteria grow on methanol alone it is not yet clear if they get their reducing equivalents from a reversal of methanogenic enzymes, thus oxidizing methyl groups to CO2. An alternative (since these and acetate-catabolizing methanogens possess cytochrome b) is electron transport and possible proton pumping via a cytochrome-containing electron transport chain. Several of the actual components of the methanogenic pathway from CO2 have been characterized. Methanofuran is apparently the first carbon-carrying cofactor in the pathway, forming carboxy-methanofuran. Formyl-FAF or formyl-methanopterin (YFC, a very rapidly labelled compound during 14C pulse labeling) has been implicated as an obligate intermediate in methanogenesis, since methanopterin or FAF is an essential component of the carbon dioxide reducing factor in dialyzed extract methanogenesis. FAF also carries the carbon at the methylene and methyl oxidation levels.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

将二氧化碳或任何其他产甲烷底物还原为甲烷,与将氧气、硝酸盐或硫酸盐还原为更还原态的产物具有相同的功能。这些放能反应与通过电荷分离和质子动力驱动的ATP酶产生可用能量相偶联。为了理解产甲烷菌如何从C-1单位还原中获取能量,必须研究相关化学反应的生物化学过程,以及这些反应如何与电荷分离和随后的电子传递磷酸化的产生相偶联。关于多种生物体产甲烷作用的数据表明,在通过甲基辅酶M还原酶产生甲烷的过程中,普遍使用CH3-S-CoM作为最终电子受体,并且5-脱氮黄素作为还原当量的主要来源。三种已知的酶在还原型5-脱氮黄素的产生中起催化作用:氢化酶、甲酸脱氢酶和一氧化碳脱氢酶。这三种酶都是质子泵的潜在候选者。在那些必须氧化部分底物以获取电子,从而将另一部分底物还原为甲烷的生物体中(例如,那些利用甲酸、甲醇或乙酸的生物体),后两种酶可能在氧化方向上起作用。二氧化碳是产甲烷作用最常见的底物,但它是唯一一种绝对需要氢气和氢化酶存在的底物。在甲醇上生长需要一种含钴胺素的甲醇-辅酶M甲基转移酶,并且当存在氢化酶时,除了甲基辅酶M还原酶系统外,不一定需要任何其他产甲烷酶。当细菌仅在甲醇上生长时,目前尚不清楚它们是否通过产甲烷酶的逆转来获得还原当量,从而将甲基氧化为二氧化碳。另一种可能性(因为这些以及分解乙酸的产甲烷菌都含有细胞色素b)是通过含细胞色素的电子传递链进行电子传递并可能进行质子泵作用。从二氧化碳开始的产甲烷途径的几个实际成分已经得到了表征。甲烷呋喃显然是该途径中第一个携带碳的辅因子,形成羧基甲烷呋喃。甲酰-FAF或甲酰-甲烷蝶呤(YFC,在14C脉冲标记期间一种非常快速标记的化合物)被认为是产甲烷作用中的一个必不可少的中间体,因为甲烷蝶呤或FAF是透析提取物产甲烷作用中二氧化碳还原因子的一个必需成分。FAF还在亚甲基和甲基氧化水平携带碳。(摘要截取自400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验