Suppr超能文献

Regulation of cyclic nucleotide and prostaglandin formation in normal human thyroid tissue and in autonomous nodules.

作者信息

Van Sande J, Mockel J, Boeynaems J M, Dor P, Andry G, Dumont J E

出版信息

J Clin Endocrinol Metab. 1980 Apr;50(4):776-85. doi: 10.1210/jcem-50-4-776.

Abstract

We have investigated the regulation of the human throid gland based on controls discovered in the dog thyroid gland. TSH and thyroid-stimulating immunoglobulin enhanced cAMP accumulation, which supports the validity of the Sutherland model for the action of TSH on the human thyroid. Iodide inhibited TSH- and thyroid-stimulating immunoglobulin-activated cAMP accumulation and this effect was reduced by methimazole, showing that, in this tissue, iodide, through an oxidized derivative, depresses the TSH-cAMP system. Contrary to the hypothesis of a short feedback loop of thyroid hormone, no thyroid effect of T3 or T4 was found. Adrenergic agents (norepinephrine and isoproterenol) enhanced cAMP accumulation; this effect was inhibited by dl-propranolol but not by d-propranolol or phentolamine. This suggests a positive control of the thyroid cAMP system by beta-adrenergic receptors. Histamine also increased cAMP accumulation. However, the role of these controls is unknown. Acetylcholine, by a muscarinic type effect, enhanced cGMP accumulation and prostaglandin E2 and prostaglandin F2 alpha release. These effects were mimicked by ionophore A23187 and abolished in a calcium-deprived medium, which suggests that they are secondary to a raised Ca++ influx. The results are summarized in a general working model of human thyroid regulation. These biochemical controls have been compared in normal tissue and autonomous nodules. No evidence of increased sensitivity to TSH of the nodular tissue was found. On the other hand, this tissue was less sensitive to acetylcholine (cGMP accumulation) and more sensitive to norepinephrine (cAMP accumulation).

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验