Gati W P, Straub P W
J Biol Chem. 1978 Feb 25;253(4):1315-21.
The gamma- and Bbeta-polypeptide chains of purified human fibrinogen have each been resolved into two major species: gammaL and gammaR and BbetaL and BbetaR. These molecular variants, separable on CM-cellulose, differ from each other in sialic acid content: approximately 2 residues of sialic acid per molecule of polypeptide chain for the L species to 1 residue of sialic acid per molecule for the R species. The two types of each polypeptide are demonstrable in preparations of fibrinogen from single donors as well as in pooled fibrinogen. The L and R forms of the gamma chains or the Bbeta chains do not differ in their electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels, suggesting that they are similar in molecular weight. They are also indistinguishable in polyacrylamide gels in the presence of urea at pH 2.7. Maps of ninhydrin-positive tryptic peptides of the L and R forms of the gamma chain displayed differences within a small group of peptides which have been shown to contain the sialic acid residues present in the gamma-polypeptides. No differences between the peptide maps of BbetaL and BbetaR chains were obvious. A larger ratio of L/R in the gamma and Bbeta chains of dysfibrinogenemia fibrinogen "Zürich II" than in those of normal fibrinogen explains the higher content of sialic acid measured in the native Zürich II fibrinogen molecule.