Suppr超能文献

从溶解成分中重构大鼠脑电压敏感钠通道。

Reconstitution of the voltage-sensitive sodium channel of rat brain from solubilized components.

作者信息

Tamkun M M, Catterall W A

出版信息

J Biol Chem. 1981 Nov 25;256(22):11457-63.

PMID:6271752
Abstract

The voltage-sensitive sodium channel of rat brain synaptosomes was solubilized with sodium cholate. The solubilized sodium channel migrated on a sucrose density gradient with an apparent S20,w of approximately 12 S, retained [3H]saxitoxin ([3H]STX) binding activity that was labile at 36 degrees C but no longer bound 125I-labeled scorpion toxin (125I-ScTX). Following reconstitution into phosphatidylcholine vesicles, the channel regained 125I-ScTX binding and thermal stability of [3H]STX binding. Approximately 50% of the [3H]STX binding activity and 58% of 125I-ScTX binding activity were recovered after reconstitution. The reconstituted sodium channel bound STX and ScTX with KD values of 5 and 10 nM, respectively. Under depolarized conditions, veratridine enhanced the binding of 125I-ScTX with a K0.5 of 20 microM. These KD and K0.5 values are similar to those of the native synaptosome sodium channel. 125I-ScTX binding to the reconstituted sodium channel, as with the native channel, was voltage dependent. The KD for 125I-ScTX increased with depolarization. This voltage dependence was used to demonstrate that the reconstituted channel transports Na+. Activation of sodium channels by veratridine under conditions expected to cause hyperpolarization of the reconstituted vesicles increased 125I-ScTX binding 3-fold. This increased binding was blocked by STX with K0.5 = 5 nM. These data indicate that reconstituted sodium channels can transport Na+ and hyperpolarize the reconstituted vesicles. Thus, incorporation of solubilized synaptosomal sodium channels into phosphatidylcholine vesicles results in recovery of toxin binding and action at each of the three neurotoxin receptor sites and restoration of Na+ transport by the reconstituted channels.

摘要

用胆酸钠溶解大鼠脑突触体的电压敏感钠通道。溶解的钠通道在蔗糖密度梯度上迁移,其表观S20,w约为12 S,保留了[3H]石房蛤毒素([3H]STX)结合活性,该活性在36℃时不稳定,但不再结合125I标记的蝎毒素(125I-ScTX)。重新组装到磷脂酰胆碱囊泡中后,通道恢复了125I-ScTX结合以及[3H]STX结合的热稳定性。重新组装后,约50%的[3H]STX结合活性和58%的125I-ScTX结合活性得以恢复。重新组装的钠通道结合STX和ScTX的KD值分别为5 nM和10 nM。在去极化条件下,藜芦碱增强了125I-ScTX的结合,其K0.5为20 μM。这些KD和K0.5值与天然突触体钠通道的相似。125I-ScTX与重新组装的钠通道的结合,与天然通道一样,是电压依赖性的。125I-ScTX的KD值随去极化而增加。这种电压依赖性被用于证明重新组装的通道运输Na+。在预期会导致重新组装的囊泡超极化的条件下,藜芦碱激活钠通道使125I-ScTX结合增加了3倍。这种增加的结合被STX阻断,K0.5 = 5 nM。这些数据表明重新组装的钠通道可以运输Na+并使重新组装的囊泡超极化。因此,将溶解的突触体钠通道整合到磷脂酰胆碱囊泡中可导致三种神经毒素受体位点各自的毒素结合和作用恢复,以及重新组装的通道恢复Na+运输。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验