Suppr超能文献

犬心肌中烟酰胺腺嘌呤二核苷酸的丧失决定了心肌细胞从可逆性缺血损伤向不可逆性缺血损伤的转变。

Loss of canine myocardial nicotinamide adenine dinucleotides determines the transition from reversible to irreversible ischemic damage of myocardial cells.

作者信息

Klein H H, Schaper J, Puschmann S, Nienaber C, Kreuzer H, Schaper W

出版信息

Basic Res Cardiol. 1981 Nov-Dec;76(6):612-21. doi: 10.1007/BF01908051.

Abstract

We investigated if the loss of nicotinamide coenzymes in ischemic-infarcted myocardium may be responsible for the transition from reversibly ischemic to irreversibly infarcted cell damage. The LAD was occluded in 6 dogs for 4 h. Transmural needle biopsies were taken from he ischemic-infarcted region after 1/2, 1, 11/2, 2, and 4 h of ischemia and further divided into subepicardial and subendocardial halves. At each time interval the concentration of the nicotinamide coenzymes NAD, NADH, and NADPH were measured, and the degree of cellular injury was evaluated by electron microscopy. The glycohydrolase activity (EC 3.2.2.5), the enzyme which splits NAD, was determined in brain, myocardium, kidney, and skeletal muscle of 4 rats. Total NAD, the sum of NAD and NADH, started to decrease significantly in the ischemic subendocardium 1 h after onset of ischemia. Degradation of NADPH occurred later. Loss ot total NAD was about 60-70% when electron microscopy diagnosed irreversible cell injury. The glycohydrolase activity was the highest in brain followed by myocardium, kidney, and skeletal muscle, reflecting the different tolerances of these tissues towards ischemia. The key mechanism for ischemic injury seems to be the tissue acidosis which activates the glycohydrolase leading to a loss of the vital coenzymes.

摘要

我们研究了缺血梗死心肌中烟酰胺辅酶的丧失是否可能是导致从可逆性缺血转变为不可逆性梗死细胞损伤的原因。对6只犬的左前降支进行4小时的闭塞。在缺血1/2、1、1 1/2、2和4小时后,从缺血梗死区域获取透壁针吸活检组织,并进一步分为心外膜下和心内膜下两半。在每个时间间隔测量烟酰胺辅酶NAD、NADH和NADPH的浓度,并通过电子显微镜评估细胞损伤程度。在4只大鼠的脑、心肌、肾和骨骼肌中测定了裂解NAD的糖水解酶活性(EC 3.2.2.5)。缺血开始1小时后,缺血的心内膜下总NAD(NAD与NADH之和)开始显著下降。NADPH的降解发生在稍后。当电子显微镜诊断为不可逆细胞损伤时,总NAD的损失约为60 - 70%。糖水解酶活性在脑中最高,其次是心肌、肾和骨骼肌,这反映了这些组织对缺血的不同耐受性。缺血损伤的关键机制似乎是组织酸中毒,它激活糖水解酶导致重要辅酶的丧失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验