Suppr超能文献

洋葱伯克霍尔德菌中与果糖利用相关的酶

Enzymes related to fructose utilization in Pseudomonas cepacia.

作者信息

Allenza P, Lee Y N, Lessie T G

出版信息

J Bacteriol. 1982 Jun;150(3):1348-56. doi: 10.1128/jb.150.3.1348-1356.1982.

Abstract

Growth of Pseudomonas cepacia on fructose, mannitol, or sorbitol depended on formation of an inducible fructokinase (forming fructose-6-phosphate) and the presence of enzymes of the Entner-Doudoroff pathway. Mutants deficient in any of these enzymes failed to utilize the aforementioned carbohydrates. Fructokinase deficiency did not affect growth of the bacteria on glucose. Fructose was accumulated intracellularly by active transport. Mutants blocked in transport of fructose grew normally on mannitol or sorbitol despite their inability to utilize fructose. Growth on either of these hexitols or on galactitol was accompanied by induction of two hexitol dehydrogenases, one active primarily with mannitol and the other active with sorbitol and galactitol. As expected, a mutant deficient in mannitol dehydrogenase failed to utilize mannitol as a carbon and energy source but grew normally on sorbitol and galactitol. Extracts of bacteria grown on fructose, mannitol, or sorbitol and higher levels of phosphoglucose isomerase than extracts of bacteria grown on alternate carbon sources such as citrate or phthalate. The higher levels were due to appearance of a second phosphoglucose isomerase species not present in cells with the lower activity. The results indicate that the initial steps in fructose utilization by P. cepacia differ from those of most other pseudomonads, which transport fructose by phosphoenolpyruvate-dependent translocation, forming fructose-1-phosphate, and suggest that degradation of fructose, mannitol, and sorbitol occurs primarily via the Entner-Doudoroff pathway.

摘要

洋葱伯克霍尔德菌在果糖、甘露醇或山梨醇上的生长取决于诱导型果糖激酶(形成6-磷酸果糖)的形成以及恩特纳-杜多罗夫途径中酶的存在。缺乏这些酶中任何一种的突变体无法利用上述碳水化合物。果糖激酶缺乏并不影响该细菌在葡萄糖上的生长。果糖通过主动运输在细胞内积累。尽管无法利用果糖,但在果糖运输中受阻的突变体在甘露醇或山梨醇上仍能正常生长。在这些己糖醇或半乳糖醇中的任何一种上生长时,会诱导两种己糖醇脱氢酶,一种主要对甘露醇有活性,另一种对山梨醇和半乳糖醇有活性。正如预期的那样,缺乏甘露醇脱氢酶的突变体无法将甘露醇用作碳源和能源,但在山梨醇和半乳糖醇上能正常生长。在果糖、甘露醇或山梨醇上生长的细菌提取物中磷酸葡萄糖异构酶的水平高于在柠檬酸盐或邻苯二甲酸盐等替代碳源上生长的细菌提取物。较高的水平是由于出现了一种在活性较低的细胞中不存在的第二种磷酸葡萄糖异构酶。结果表明,洋葱伯克霍尔德菌利用果糖的初始步骤与大多数其他假单胞菌不同,后者通过磷酸烯醇丙酮酸依赖性转运来运输果糖,形成1-磷酸果糖,并表明果糖、甘露醇和山梨醇的降解主要通过恩特纳-杜多罗夫途径进行。

相似文献

1
Enzymes related to fructose utilization in Pseudomonas cepacia.
J Bacteriol. 1982 Jun;150(3):1348-56. doi: 10.1128/jb.150.3.1348-1356.1982.
2
Biochemical characterization of a fructokinase mutant of Rhizobium meliloti.
J Bacteriol. 1980 Oct;144(1):12-6. doi: 10.1128/jb.144.1.12-16.1980.
3
Pseudomonas cepacia mutants blocked in the Entner-Doudoroff pathway.
J Bacteriol. 1982 Jun;150(3):1340-7. doi: 10.1128/jb.150.3.1340-1347.1982.
6
Enzymes of the Entner-Doudoroff path in fructose-grown Hydrogenomonas eutropha.
Can J Microbiol. 1968 Nov;14(11):1259-60. doi: 10.1139/m68-209.
8
9
Pathways of D-fructose catabolism in species of Pseudomonas.
Arch Microbiol. 1977 Feb 4;112(1):49-55. doi: 10.1007/BF00446653.
10
Adenosine triphosphate-linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase.
J Bacteriol. 1967 Apr;93(4):1337-45. doi: 10.1128/jb.93.4.1337-1345.1967.

引用本文的文献

1
Sucrose Metabolism in Haloarchaea: Reassessment Using Genomics, Proteomics, and Metagenomics.
Appl Environ Microbiol. 2019 Mar 6;85(6). doi: 10.1128/AEM.02935-18. Print 2019 Mar 15.
2
Requirement for phosphoglucose isomerase of Xanthomonas campestris in pathogenesis of citrus canker.
Appl Environ Microbiol. 1999 Dec;65(12):5564-70. doi: 10.1128/AEM.65.12.5564-5573.1999.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Pseudomonas cepacia mutants blocked in the Entner-Doudoroff pathway.
J Bacteriol. 1982 Jun;150(3):1340-7. doi: 10.1128/jb.150.3.1340-1347.1982.
4
Biochemical characterization of a fructokinase mutant of Rhizobium meliloti.
J Bacteriol. 1980 Oct;144(1):12-6. doi: 10.1128/jb.144.1.12-16.1980.
5
Functional multiplicity of phosphoglucose isomerase from Lactobacillus casei.
Biochim Biophys Acta. 1980 Oct;615(2):465-73. doi: 10.1016/0005-2744(80)90512-4.
6
Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa.
Arch Biochem Biophys. 1970 Jun;138(2):470-82. doi: 10.1016/0003-9861(70)90371-1.
7
Carbohydrate metabolism in microorganisms.
Annu Rev Microbiol. 1969;23:539-78. doi: 10.1146/annurev.mi.23.100169.002543.
10
Pseudomonas cepacia mutants blocked in the direct oxidative pathway of glucose degradation.
J Bacteriol. 1979 Jul;139(1):323-5. doi: 10.1128/jb.139.1.323-325.1979.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验