Suppr超能文献

肾髓质中钾循环的后果。亨氏袢髓质厚升支离子转运的作用。

Consequences of potassium recycling in the renal medulla. Effects of ion transport by the medullary thick ascending limb of Henle's loop.

作者信息

Stokes J B

出版信息

J Clin Invest. 1982 Aug;70(2):219-29. doi: 10.1172/jci110609.

Abstract

The consequences of K recycling and accumulation in the renal medulla were examined by measuring the effect of elevated K concentration on ion transport by the medullary thick ascending limb of Henle's loop. Perfused and bathed in vitro, thick limbs from both mouse and rabbit displayed a graded, reversible reduction of transepithelial voltage after increasing K concentration from 5 to 10, 15, or 25 mM. The effect was reproducible whether osmolality was 328 or 445 mosmol/kg H2O, and whether K replaced Na or choline. Net chloride absorption and transepithelial voltage were reduced by almost 90% when ambient K concentration was 25 mM. When either lumen or bath K was increased to 25 mM, net Na absorption was reduced. There was spontaneous net K absorption when perfusate and bath K concentration was 5 mM. Analysis of transepithelial K transfer after imposition of chemical gradients demonstrated rectification in the absorptive direction. Absorption of K by this segment provides a means to maintain high medullary interstitial concentration. Accumulation of K in the outer medulla, by reducing NaCl absorption, would increase volume flow through the loop of Henle and increase Na and water delivery to the distal nephron. K recycling thus might provide optimum conditions for K secretion by the distal nephron.

摘要

通过测量升高的钾浓度对亨氏袢髓质厚升支离子转运的影响,研究了肾脏髓质中钾再循环和积累的后果。在体外进行灌注和浸泡时,来自小鼠和兔子的厚升支在将钾浓度从5 mM增加到10、15或25 mM后,均表现出跨上皮电压的分级、可逆性降低。无论渗透压是328还是445 mosmol/kg H₂O,以及钾是替代钠还是胆碱,这种效应都是可重复的。当环境钾浓度为25 mM时,净氯吸收和跨上皮电压降低了近90%。当管腔或浴液中的钾增加到25 mM时,净钠吸收减少。当灌注液和浴液中的钾浓度为5 mM时,存在自发的净钾吸收。施加化学梯度后对跨上皮钾转运的分析表明,在吸收方向上存在整流现象。该节段对钾的吸收提供了一种维持高髓质间质浓度的方式。通过减少氯化钠吸收,钾在外髓质中的积累会增加通过亨氏袢的体积流量,并增加钠和水向远端肾单位的输送。因此,钾再循环可能为远端肾单位分泌钾提供最佳条件。

相似文献

引用本文的文献

5
High dietary K intake inhibits proximal tubule transport.高钾饮食抑制近端肾小管转运。
Am J Physiol Renal Physiol. 2023 Aug 1;325(2):F224-F234. doi: 10.1152/ajprenal.00013.2023. Epub 2023 Jun 15.
8
Directing two-way traffic in the kidney: A tale of two ions.在肾脏中指挥双向交通:两种离子的故事。
J Gen Physiol. 2022 Oct 3;154(10). doi: 10.1085/jgp.202213179. Epub 2022 Sep 1.
9
A mathematical model of the rat kidney. IV. Whole kidney response to hyperkalemia.大鼠肾脏的数学模型。四、肾脏整体对高钾血症的反应。
Am J Physiol Renal Physiol. 2022 Feb 1;322(2):F225-F244. doi: 10.1152/ajprenal.00413.2021. Epub 2022 Jan 10.
10
Dietary potassium and the kidney: lifesaving physiology.膳食钾与肾脏:挽救生命的生理学
Clin Kidney J. 2020 Sep 2;13(6):952-968. doi: 10.1093/ckj/sfaa157. eCollection 2020 Dec.

本文引用的文献

1
POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES.膜的电位、阻抗和整流。
J Gen Physiol. 1943 Sep 20;27(1):37-60. doi: 10.1085/jgp.27.1.37.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验