Suppr超能文献

小牛浦肯野纤维中起搏通道的阻断与激活:钾、铯和铷的作用

Block and activation of the pace-maker channel in calf purkinje fibres: effects of potassium, caesium and rubidium.

作者信息

DiFrancesco D

出版信息

J Physiol. 1982 Aug;329:485-507. doi: 10.1113/jphysiol.1982.sp014315.

Abstract
  1. The effects of low concentrations of Cs(+) (0.01-3mM) on the fully activated I-V relation ī(f)(E) for the pace-maker current in calf Purkinje fibres have been investigated. The action of Cs(+) is two-fold: in the negative region of the I-V curve Cs(+) induces a channel blockade; on the other hand, at more positive potentials Cs(+) can produce the opposite effect, i.e. a current increase.2. Cs(+)-induced blockade is concentration- and voltage-dependent, as observed on other cation channels. Data in the far negative voltage range (about - 150 to - 50 mV) can be fitted by a simple block model (Woodhull, 1973), which gives a mean value of 0.71 for the fraction of membrane thickness (delta) crossed by Cs(+) ions before reaching the blocking site. The value of delta does not appear to be affected by either external Na or external K concentrations. Values for the dissociation constant of the blocking reaction at E = 0 mV (k(0)) are found in the range 0.5-3.7 mM. In the positive region of the ī(f)(E) relation the current depression caused by channel blockade vanishes. Unexpectedly, in this range the current can be observed to increase with Cs(+), and ī(f)(E) curves in different Cs(+) concentrations show cross-over.3. Changing external K(+) also produces similar cross-over phenomena. Investigation of this effect reveals that the increase in slope of the I-V curve on raising the external K(+) concentration follows Michaelis-Menten kinetics, and can be interpteted in terms of K(+)-induced channel activation. It is found that 44+/-6 mM-K(+) half-saturates the channel activating reaction.4. The Cs(+)-induced current increase is large in low-K(+) solutions and vanishes in high-K(+) solutions, suggesting a competition between Cs(+) and K(+) ions in their activating action. Increasing Na(+) also limits the Cs(+)-induced current increase.5. Rb(+) also blocks the i(f) channel, though less efficiently than Cs(+). The block caused by Rb(+) is, unlike that of Cs(+), nearly voltage-independent, and is explained by assuming that the blocking reaction occurs near the external mouth of the channel (mean value of delta is 0.05). The zero-voltage dissociation constant (k(0)) of the Rb(+)-blocking reaction ranges between 1.4 and 5.4 mM, and is lower in low-Na(+), high-K(+) solutions.6. A possible characterization of the i(f) channel which explains these results includes an inner ;blocking' site, to which external Cs(+) ions bind, blocking the channel, and a more external ;activatory' site, to which K(+), Cs(+), Rb(+) and possibly Na(+) ions bind. Binding of K(+) to this site induces a current increase either by modulating the channel, or actually by opening the channel itself. A similar mechanism can apply to Cs(+) and to Rb(+) binding.
摘要
  1. 研究了低浓度铯离子(Cs⁺)(0.01 - 3 mM)对小牛浦肯野纤维中起搏电流完全激活的电流 - 电压关系I(f)(E)的影响。Cs⁺的作用具有双重性:在电流 - 电压曲线的负向区域,Cs⁺会引起通道阻滞;另一方面,在更正的电位下,Cs⁺会产生相反的效果,即电流增加。

  2. 与在其他阳离子通道上观察到的情况一样,Cs⁺诱导的阻滞具有浓度和电压依赖性。在远负电压范围(约 - 150至 - 50 mV)的数据可以用一个简单的阻滞模型(伍德胡尔,1973)拟合,该模型给出Cs⁺离子在到达阻滞位点之前穿过膜厚度(δ)的分数的平均值为0.71。δ的值似乎不受外部Na⁺或外部K⁺浓度的影响。在E = 0 mV时阻滞反应的解离常数(k(0))的值在0.5 - 3.7 mM范围内。在I(f)(E)关系的正向区域,由通道阻滞引起的电流降低消失。出乎意料的是,在此范围内可以观察到电流随Cs⁺增加,并且不同Cs⁺浓度下的I(f)(E)曲线显示交叉。

  3. 改变外部K⁺也会产生类似的交叉现象。对这种效应的研究表明,提高外部K⁺浓度时电流 - 电压曲线斜率的增加遵循米氏动力学,并且可以用K⁺诱导的通道激活来解释。发现44±6 mM - K⁺使通道激活反应半饱和。

  4. Cs⁺诱导的电流增加在低K⁺溶液中很大,而在高K⁺溶液中消失,这表明Cs⁺和K⁺离子在其激活作用中存在竞争。增加Na⁺也会限制Cs⁺诱导的电流增加。

  5. 铷离子(Rb⁺)也会阻滞I(f)通道,尽管效率不如Cs⁺。与Cs⁺不同,Rb⁺引起的阻滞几乎与电压无关,并且通过假设阻滞反应发生在通道外口附近来解释(δ的平均值为0.05)。Rb⁺阻滞反应的零电压解离常数(k(0))在1.4至5.4 mM之间,并且在低Na⁺、高K⁺溶液中较低。

  6. 一种可能解释这些结果的I(f)通道特征包括一个内部“阻滞”位点,外部Cs⁺离子与之结合,从而阻滞通道,以及一个更外部的“激活”位点,K⁺、Cs⁺、Rb⁺以及可能的Na⁺离子与之结合。K⁺与该位点的结合通过调节通道或实际上通过打开通道本身来诱导电流增加。类似的机制也适用于Cs⁺和Rb⁺的结合。

相似文献

引用本文的文献

2
Structural determinants of ivabradine block of the open pore of HCN4.HCN4 开放孔道中异搏定阻断的结构决定因素。
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2402259121. doi: 10.1073/pnas.2402259121. Epub 2024 Jun 25.
4
Cesium activates the neurotransmitter receptor for glycine.铯激活甘氨酸的神经递质受体。
Front Mol Neurosci. 2023 May 22;16:1018530. doi: 10.3389/fnmol.2023.1018530. eCollection 2023.
6
When Is a Potassium Channel Not a Potassium Channel?当一个钾离子通道不是一个钾离子通道时,它是什么?
Function (Oxf). 2022 Oct 7;3(6):zqac052. doi: 10.1093/function/zqac052. eCollection 2022.

本文引用的文献

2
THE RUBIDIUM AND POTASSIUM PERMEABILITY OF FROG MUSCLE MEMBRANE.青蛙肌肉膜的铷和钾通透性
J Physiol. 1964 Dec;175(1):134-59. doi: 10.1113/jphysiol.1964.sp007508.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验