Suppr超能文献

Properties of 5'-nucleotidase in rat heart sarcolemma.

作者信息

Lamers J M, Heyliger C E, Panagia V, Dhalla N S

出版信息

Biochim Biophys Acta. 1983 Feb 15;742(3):568-75. doi: 10.1016/0167-4838(83)90275-3.

Abstract

The activity of 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) was examined in membrane fractions isolated by hypotonic shock-LiBr treatment (fraction HL) and sucrose gradient separation (fraction S) of rat ventricle homogenate. The enzyme activity in these two fractions differed significantly in several respects. In fraction HL, 5'-nucleotidase had a high affinity for AMP (Km 35 microM), and ATP was a potent competitive inhibitor. In contrast, the 5'-nucleotidase displayed by fraction S showed a low substrate affinity (Km 130 microM) and less sensitivity to ATP. Treatment of membranes with trypsin and neuraminidase markedly stimulated 5'-nucleotidase in fraction HL, whereas only a modest effect was observed in fraction S. Exposure of the membranes to Triton X-100 resulted in a 60% and 10% increase in the enzyme activity in fractions HL and S, respectively. The characteristic activity ratios of 5'-nucleotidase at 200 microM relative to 50 microM AMP in fractions HL and S were modified by alamethicin in an opposite way and became identical. Although concanavalin A almost completely inhibited the 5'-nucleotidase activity in both membrane preparations at a concentration of 2 microM, Hill plots of the data on concanavalin A inhibition revealed a coefficient of 2.2 for fraction S and 1.1 for fraction HL. The differences in 5'-nucleotidase activity of the two membrane fractions are considered to be due to differences in the orientation of the vesicles of the sarcolemmal preparations. These results suggest that two distinct catalytic sites for 5'-nucleotidase are present at the intra- and extracellular surface of the rat heart sarcolemma.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验