Suppr超能文献

蟑螂中枢神经系统胚胎后期发育过程中巨型中间神经元的形态学和电生理学特性

Morphological and electrophysiological properties of giant interneurons during the postembryonic development of the cockroach CNS.

作者信息

Yarom Y, Spira M E

出版信息

Brain Res. 1983 Jun;284(2-3):321-34. doi: 10.1016/0165-3806(83)90015-9.

Abstract

The giant interneurons (GIN) of the central nervous system of the cockroach undergo two major physiological changes during the postembryonic development period: (A) a gradual decrease in the safety factor for action potential propagation across the GIN in the metathoracic ganglion (T3); and (B) a marked decrease in the number of afferent pathways innervating the GIN in T3 (Spira and Yarom). Analysis of the morphological structure of the GINs, by intracellular injection of cobalt ions and by cross-sections prepared for light and electron microscope, reveals that despite the extensive growth of the GINs during the postembryonic developmental period, the main structural outline of the fibers is not altered. In adult preparations, however, the GIN diameter narrows 25-26% in ganglion T3, while in early nymphal stages the reduction is only 8-10%. The difference in the extent of narrowing of the fibers in adult and nymphal stages is the major factor that accounts for the development of a low safety factor region for impulse propagation across T3. Analysis of the passive membrane properties of the GIN reveals that the electrotonic length of the GIN segment in T3 is identical in adult and nymphal stages. It is concluded that the functional disappearance of afferents innervating the GINs in T3 is a consequence of decreased transmission efficacy along the afferent pathways.

摘要

蟑螂中枢神经系统中的巨型中间神经元(GIN)在胚胎后期发育阶段经历了两个主要的生理变化:(A)跨后胸神经节(T3)中GIN的动作电位传播安全系数逐渐降低;(B)支配T3中GIN的传入通路数量显著减少(斯皮拉和亚罗姆)。通过向细胞内注射钴离子以及制备用于光学显微镜和电子显微镜观察的横截面,对GIN的形态结构进行分析,结果显示,尽管在胚胎后期发育阶段GIN有广泛生长,但其纤维的主要结构轮廓并未改变。然而,在成年标本中,T3神经节中GIN的直径缩小了25 - 26%,而在若虫早期阶段,缩小幅度仅为8 - 10%。成年和若虫阶段纤维缩窄程度的差异是导致跨T3冲动传播低安全系数区域形成的主要因素。对GIN的被动膜特性分析表明,T3中GIN节段的电紧张长度在成年和若虫阶段是相同的。研究得出结论,支配T3中GIN的传入神经功能消失是沿传入通路传递效率降低的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验