Suppr超能文献

小龙虾巨轴突的轴突周隙

The periaxonal space of crayfish giant axons.

作者信息

Shrager P, Starkus J C, Lo M V, Peracchia C

出版信息

J Gen Physiol. 1983 Aug;82(2):221-44. doi: 10.1085/jgp.82.2.221.

Abstract

The influence of the glial cell layer on effective external ion concentrations has been studied in crayfish giant axons. Excess K ions accumulate in the periaxonal space during outward K+ current flow, but at a rate far below that expected from the total ionic flux and the measured thickness of the space. At the conclusion of outward current flow, the external K+ concentration returns to normal in an exponential fashion, with a time constant of approximately 2 ms. This process is about 25 times faster than is the case in squid axons. K+ repolarization (tail) currents are generally biphasic at potentials below about -40 mV and pass through a maximum before approaching a final asymptotic level. The initial rapid phase may in part reflect depletion of excess K+. After block of inactivation and reversal of the Na+ concentration gradient, we could demonstrate accumulation and washout of excess Na ions in the periaxonal space. Characteristics of these processes appeared similar to those of K+. Crayfish glial cell ultrastructure has been examined both in thin sections and after freeze fracture. Layers of connective tissue and extracellular fluid alternate with thin layers of glial cytoplasm. A membranous tubular lattice, spanning the innermost glial layers, may provide a pathway allowing rapid diffusion of excess ions from the axon surface.

摘要

在小龙虾巨轴突中研究了神经胶质细胞层对有效外部离子浓度的影响。外向钾离子电流流动期间,过量的钾离子在轴突周围空间积累,但积累速率远低于根据总离子通量和测量的空间厚度所预期的速率。外向电流流动结束时,外部钾离子浓度以指数方式恢复正常,时间常数约为2毫秒。这个过程比鱿鱼轴突中的情况快约25倍。在低于约-40 mV的电位下,钾离子复极化(尾)电流通常是双相的,在达到最终渐近水平之前经过一个最大值。初始快速阶段可能部分反映了过量钾离子的耗尽。在失活阻断和钠离子浓度梯度反转后,我们能够证明轴突周围空间中过量钠离子的积累和洗脱。这些过程的特征似乎与钾离子的相似。已通过超薄切片和冷冻断裂检查了小龙虾神经胶质细胞的超微结构。结缔组织层和细胞外液与神经胶质细胞质的薄层交替出现。横跨最内层神经胶质层的膜性管状晶格可能提供了一条允许过量离子从轴突表面快速扩散的途径。

相似文献

1
The periaxonal space of crayfish giant axons.
J Gen Physiol. 1983 Aug;82(2):221-44. doi: 10.1085/jgp.82.2.221.
6
Removal of periaxonal potassium accumulation in a squid giant axon by outward osmotic water flow.
J Physiol. 1988 May;399:647-56. doi: 10.1113/jphysiol.1988.sp017101.
9
Modification of sodium and potassium channel gating kinetics by ether and halothane.
J Gen Physiol. 1981 Mar;77(3):233-53. doi: 10.1085/jgp.77.3.233.

本文引用的文献

1
The effect of sodium ions on the electrical activity of giant axon of the squid.
J Physiol. 1949 Mar 1;108(1):37-77. doi: 10.1113/jphysiol.1949.sp004310.
2
THE STRUCTURE OF THE SCHWANN CELL AND ITS RELATION TO THE AXON IN CERTAIN INVERTEBRATE NERVE FIBERS.
Proc Natl Acad Sci U S A. 1954 Sep;40(9):863-70. doi: 10.1073/pnas.40.9.863.
3
ANOMALOUS RECTIFICATION IN THE SQUID GIANT AXON INJECTED WITH TETRAETHYLAMMONIUM CHLORIDE.
J Gen Physiol. 1965 May;48(5):859-72. doi: 10.1085/jgp.48.5.859.
4
Characterization of the membranes in the giant nerve fiber of the squid.
J Gen Physiol. 1960 May;43(5):73-103. doi: 10.1085/jgp.43.5.73.
5
The after-effects of impulses in the giant nerve fibres of Loligo.
J Physiol. 1956 Feb 28;131(2):341-76. doi: 10.1113/jphysiol.1956.sp005467.
6
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
7
Ultrastructural studies of severed medial giant and other CNS axons in crayfish.
Cell Tissue Res. 1980;208(1):123-33. doi: 10.1007/BF00234178.
10
Diffusion models for the squid axon Schwann cell layer.
Biophys J. 1980 Jan;29(1):95-117. doi: 10.1016/S0006-3495(80)85120-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验